// @(#)root/histpainter:$Id$
// Author: Rene Brun, Evgueni Tcherniaev, Olivier Couet 12/12/94
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
//______________________________________________________________________________
/* Begin_Html
Legos and Surfaces package
This package was originally written by Evgueni Tcherniaev from IHEP/Protvino.
The original Fortran implementation was adapted to HIGZ/PAW by Olivier Couet
and Evgueni Tcherniaev.
This class is a subset of the original system. It has been converted to a C++
class by Rene Brun.
End_Html */
#include
#include "TROOT.h"
#include "TPainter3dAlgorithms.h"
#include "TVirtualPad.h"
#include "THistPainter.h"
#include "TH1.h"
#include "TF3.h"
#include "TView.h"
#include "TVirtualX.h"
#include "Hoption.h"
#include "Hparam.h"
#include "TMath.h"
#include "TStyle.h"
#include "TObjArray.h"
#include "THLimitsFinder.h"
#include "TColor.h"
const Double_t kRad = TMath::ATan(1)*Double_t(4)/Double_t(180);
const Double_t kFdel = 0.;
const Double_t kDel = 0.0001;
const Int_t kNiso = 4;
const Int_t kNmaxp = kNiso*13;
const Int_t kNmaxt = kNiso*12;
const Int_t kLmax = 12;
const Int_t kF3FillColor1 = 201;
const Int_t kF3FillColor2 = 202;
const Int_t kF3LineColor = 203;
Int_t TPainter3dAlgorithms::fgF3Clipping = 0;
Double_t TPainter3dAlgorithms::fgF3XClip = 0.;
Double_t TPainter3dAlgorithms::fgF3YClip = 0.;
Double_t TPainter3dAlgorithms::fgF3ZClip = 0.;
TF3 *TPainter3dAlgorithms::fgCurrentF3 = 0;
// Static arrays used to paint stacked lego plots.
const Int_t kVSizeMax = 20;
static Double_t gV[kVSizeMax];
static Double_t gTT[4*kVSizeMax];
static Int_t gColorMain[kVSizeMax+1];
static Int_t gColorDark[kVSizeMax+1];
static Int_t gEdgeColor[kVSizeMax+1];
static Int_t gEdgeStyle[kVSizeMax+1];
static Int_t gEdgeWidth[kVSizeMax+1];
extern TH1 *gCurrentHist; //these 3 globals should be replaced by class members
extern Hoption_t Hoption;
extern Hparam_t Hparam;
ClassImp(TPainter3dAlgorithms)
//______________________________________________________________________________
TPainter3dAlgorithms::TPainter3dAlgorithms(): TObject(), TAttLine(1,1,1), TAttFill(1,0)
{
// Lego default constructor
Int_t i;
fIfrast = 0;
fMesh = 1;
fRaster = 0;
fColorTop = 1;
fColorBottom = 1;
fEdgeIdx = -1;
fNlevel = 0;
fSystem = kCARTESIAN;
fDrawFace = 0;
fLegoFunction = 0;
fSurfaceFunction = 0;
TList *stack = 0;
if (gCurrentHist) stack = gCurrentHist->GetPainter()->GetStack();
fNStack = 0;
if (stack) fNStack = stack->GetSize();
if (fNStack > kVSizeMax) {
fColorMain = new Int_t[fNStack+1];
fColorDark = new Int_t[fNStack+1];
fEdgeColor = new Int_t[fNStack+1];
fEdgeStyle = new Int_t[fNStack+1];
fEdgeWidth = new Int_t[fNStack+1];
} else {
fColorMain = &gColorMain[0];
fColorDark = &gColorDark[0];
fEdgeColor = &gEdgeColor[0];
fEdgeStyle = &gEdgeStyle[0];
fEdgeWidth = &gEdgeWidth[0];
}
for (i=0;iGetPainter()->GetStack();
fNStack = 0;
if (stack) fNStack = stack->GetSize();
if (fNStack > kVSizeMax) {
fColorMain = new Int_t[fNStack+1];
fColorDark = new Int_t[fNStack+1];
fEdgeColor = new Int_t[fNStack+1];
fEdgeStyle = new Int_t[fNStack+1];
fEdgeWidth = new Int_t[fNStack+1];
} else {
fColorMain = &gColorMain[0];
fColorDark = &gColorDark[0];
fEdgeColor = &gEdgeColor[0];
fEdgeStyle = &gEdgeStyle[0];
fEdgeWidth = &gEdgeWidth[0];
}
for (i=0;iGetView();
if (!view) view = TView::CreateView(fSystem, rmin, rmax);
if (view) {
view->SetView(gPad->GetPhi(), gPad->GetTheta(), psi, i);
view->SetRange(rmin,rmax);
}
}
//______________________________________________________________________________
TPainter3dAlgorithms::~TPainter3dAlgorithms()
{
// Lego default destructor
if (fRaster) {delete [] fRaster; fRaster = 0;}
if (fNStack > kVSizeMax) {
delete [] fColorMain;
delete [] fColorDark;
delete [] fEdgeColor;
delete [] fEdgeStyle;
delete [] fEdgeWidth;
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::BackBox(Double_t ang)
{
// Draw back surfaces of surrounding box
//
// Input ANG - angle between X and Y axis
//
// DRFACE(ICODES,XYZ,NP,IFACE,T) - routine for face drawing
// ICODES(*) - set of codes for this face
// NP - number of nodes in face
// IFACE(NP) - face
// T(NP) - additional function
/* Initialized data */
static Int_t iface1[4] = { 1,4,8,5 };
static Int_t iface2[4] = { 4,3,7,8 };
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) {
Error("BackBox", "no TView in current pad");
return;
}
/* Local variables */
Double_t cosa, sina;
Int_t i;
Double_t r[24] /* was [3][8] */, av[24] /* was [3][8] */;
Int_t icodes[3];
Double_t tt[4];
Int_t ix1, ix2, iy1, iy2, iz1, iz2;
cosa = TMath::Cos(kRad*ang);
sina = TMath::Sin(kRad*ang);
view->AxisVertex(ang, av, ix1, ix2, iy1, iy2, iz1, iz2);
for (i = 1; i <= 8; ++i) {
r[i*3 - 3] = av[i*3 - 3] + av[i*3 - 2]*cosa;
r[i*3 - 2] = av[i*3 - 2]*sina;
r[i*3 - 1] = av[i*3 - 1];
}
// D R A W F O R W A R D F A C E S */
icodes[0] = 0;
icodes[1] = 0;
icodes[2] = 0;
tt[0] = r[iface1[0]*3 - 1];
tt[1] = r[iface1[1]*3 - 1];
tt[2] = r[iface1[2]*3 - 1];
tt[3] = r[iface1[3]*3 - 1];
(this->*fDrawFace)(icodes, r, 4, iface1, tt);
tt[0] = r[iface2[0]*3 - 1];
tt[1] = r[iface2[1]*3 - 1];
tt[2] = r[iface2[2]*3 - 1];
tt[3] = r[iface2[3]*3 - 1];
(this->*fDrawFace)(icodes, r, 4, iface2, tt);
}
//______________________________________________________________________________
void TPainter3dAlgorithms::ClearRaster()
{
// Clear screen
Int_t nw = (fNxrast*fNyrast + 29) / 30;
for (Int_t i = 0; i < nw; ++i) fRaster[i] = 0;
fIfrast = 0;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::ColorFunction(Int_t nl, Double_t *fl, Int_t *icl, Int_t &irep)
{
// Set correspondance between function and color levels
//
// Input: NL - number of levels
// FL(NL) - function levels
// ICL(NL+1) - colors for levels
//
// Output: IREP - reply: 0 O.K.
// -1 error in parameters:
// illegal number of levels
// function levels must be in increasing order
// negative color index
static const char *where = "ColorFunction";
/* Local variables */
Int_t i;
irep = 0;
if (nl == 0) {fNlevel = 0; return; }
// C H E C K P A R A M E T E R S
if (nl < 0 || nl > 256) {
Error(where, "illegal number of levels (%d)", nl);
irep = -1;
return;
}
for (i = 1; i < nl; ++i) {
if (fl[i] <= fl[i - 1]) {
// Error(where, "function levels must be in increasing order");
irep = -1;
return;
}
}
for (i = 0; i < nl; ++i) {
if (icl[i] < 0) {
// Error(where, "negative color index (%d)", icl[i]);
irep = -1;
return;
}
}
// S E T L E V E L S
fNlevel = nl;
for (i = 0; i < fNlevel; ++i) fFunLevel[i] = Hparam.factor*fl[i];
for (i = 0; i < fNlevel+1; ++i) fColorLevel[i] = icl[i];
}
//______________________________________________________________________________
void TPainter3dAlgorithms::DefineGridLevels(Int_t ndivz)
{
// Define the grid levels drawn in the background of surface and lego plots.
// The grid levels are aligned on the Z axis' main tick marks.
Int_t i, nbins=0;
Double_t binLow = 0, binHigh = 0, binWidth = 0;
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) {
Error("GridLevels", "no TView in current pad");
return;
}
// Find the main tick marks positions.
Double_t *rmin = view->GetRmin();
Double_t *rmax = view->GetRmax();
if (!rmin || !rmax) return;
if (ndivz > 0) {
THLimitsFinder::Optimize(rmin[2], rmax[2], ndivz,
binLow, binHigh, nbins, binWidth, " ");
} else {
nbins = TMath::Abs(ndivz);
binLow = rmin[2];
binHigh = rmax[2];
binWidth = (binHigh-binLow)/nbins;
}
// Define the grid levels
fNlevel = nbins+1;
for (i = 0; i < fNlevel; ++i) fFunLevel[i] = binLow+i*binWidth;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::DrawFaceMode1(Int_t *icodes, Double_t *xyz, Int_t np, Int_t *iface, Double_t *t)
{
// Draw face - 1st variant
//
// Function: Draw face - 1st variant
// (2 colors: 1st for external surface, 2nd for internal)
//
// References: WCtoNDC
//
// Input: ICODES(*) - set of codes for the line (not used)
// ICODES(1) - IX
// ICODES(2) - IY
// XYZ(3,*) - coordinates of nodes
// NP - number of nodes
// IFACE(NP) - face
// T(NP) - additional function defined on this face
// (not used in this routine)
/* Local variables */
Int_t i, k,ifneg,i1, i2;
Double_t x[13], y[13];
Double_t z;
Double_t p3[24] /* was [2][12] */;
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) return;
// T R A N S F E R T O N O R M A L I S E D COORDINATES
/* Parameter adjustments */
--t;
--iface;
xyz -= 4;
--icodes;
ifneg = 0;
for (i = 1; i <= np; ++i) {
k = iface[i];
if (k < 0) ifneg = 1;
if (k < 0) k = -k;
view->WCtoNDC(&xyz[k*3 + 1], &p3[2*i - 2]);
x[i - 1] = p3[2*i - 2];
y[i - 1] = p3[2*i - 1];
}
// F I N D N O R M A L
z = 0;
for (i = 1; i <= np; ++i) {
i1 = i;
i2 = i1 + 1;
if (i2 > np) i2 = 1;
z = z + p3[2*i1 - 1]*p3[2*i2 - 2] - p3[2*i1 - 2] *
p3[2*i2 - 1];
}
// D R A W F A C E
if (z > 0) SetFillColor(kF3FillColor1);
if (z <= 0) SetFillColor(kF3FillColor2);
SetFillStyle(1001);
TAttFill::Modify();
gPad->PaintFillArea(np, x, y);
// D R A W B O R D E R
if (ifneg == 0) {
SetFillStyle(0);
SetFillColor(kF3LineColor);
TAttFill::Modify();
gPad->PaintFillArea(np, x, y);
} else {
x[np] = x[0];
y[np] = y[0];
SetLineColor(kF3LineColor);
TAttLine::Modify();
for (i = 1; i <= np; ++i) {
if (iface[i] > 0) gPad->PaintPolyLine(2, &x[i-1], &y[i-1]);
}
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::DrawFaceMode2(Int_t *icodes, Double_t *xyz, Int_t np, Int_t *iface, Double_t *t)
{
// Draw face - 2nd option
//
// Function: Draw face - 2nd option
// (fill in correspondance with function levels)
//
// References: WCtoNDC, FillPolygon
//
// Input: ICODES(*) - set of codes for the line (not used)
// ICODES(1) - IX
// ICODES(2) - IY
// XYZ(3,*) - coordinates of nodes
// NP - number of nodes
// IFACE(NP) - face
// T(NP) - additional function defined on this face
/* Local variables */
Int_t i, k;
Double_t x[12], y[12];
Double_t p3[36] /* was [3][12] */;
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) return;
// T R A N S F E R T O N O R M A L I S E D COORDINATES
/* Parameter adjustments */
--t;
--iface;
xyz -= 4;
--icodes;
for (i = 1; i <= np; ++i) {
k = iface[i];
view->WCtoNDC(&xyz[k*3 + 1], &p3[i*3 - 3]);
x[i - 1] = p3[i*3 - 3];
y[i - 1] = p3[i*3 - 2];
}
// D R A W F A C E & B O R D E R
FillPolygon(np, p3, &t[1]);
if (fMesh == 1) {
if (Hoption.Lego!=0 && Hoption.Surf==0) { // i.e. PaintFillArea for lego, not for surf
SetFillColor(fEdgeColor[fEdgeIdx]);
SetFillStyle(0);
TAttFill::Modify();
gPad->PaintFillArea(np, x, y);
}
SetLineColor(fEdgeColor[fEdgeIdx]);
SetLineStyle(fEdgeStyle[fEdgeIdx]);
SetLineWidth(fEdgeWidth[fEdgeIdx]);
TAttLine::Modify();
gPad->PaintPolyLine(np, x, y);
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::DrawFaceMode3(Int_t *icodes, Double_t *xyz, Int_t np, Int_t *iface, Double_t *t)
{
// Draw face - 3rd option
//
// Function: Draw face - 3rd option
// (draw face for stacked lego plot)
//
// References: WCtoNDC
//
// Input: ICODES(*) - set of codes for the line
// ICODES(1) - IX coordinate of the line cell
// ICODES(2) - IY coordinate of the line cell
// ICODES(3) - lego number
// ICODES(4) - side: 1-face,2-right,3-back,4-left,
// 5-bottom, 6-top
// XYZ(3,*) - coordinates of nodes
// NP - number of nodes
// IFACE(NP) - face
// T(*) - additional function (not used here)
Int_t i, k;
Int_t icol = 0;
Double_t x[4], y[4], p3[12] /* was [3][4] */;
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) return;
/* Parameter adjustments */
--t;
--iface;
xyz -= 4;
--icodes;
if (icodes[4] == 6) icol = fColorTop;
if (icodes[4] == 5) icol = fColorBottom;
if (icodes[4] == 1) icol = fColorMain[icodes[3] - 1];
if (icodes[4] == 2) icol = fColorDark[icodes[3] - 1];
if (icodes[4] == 3) icol = fColorMain[icodes[3] - 1];
if (icodes[4] == 4) icol = fColorDark[icodes[3] - 1];
for (i = 1; i <= np; ++i) {
k = iface[i];
view->WCtoNDC(&xyz[k*3 + 1], &p3[i*3 - 3]);
x[i - 1] = p3[i*3 - 3];
y[i - 1] = p3[i*3 - 2];
}
SetFillStyle(1001);
SetFillColor(icol);
TAttFill::Modify();
gPad->PaintFillArea(np, x, y);
if (fMesh) {
SetFillStyle(0);
SetFillColor(fEdgeColor[fEdgeIdx]);
TAttFill::Modify();
gPad->PaintFillArea(np, x, y);
SetLineColor(fEdgeColor[fEdgeIdx]);
SetLineStyle(fEdgeStyle[fEdgeIdx]);
SetLineWidth(fEdgeWidth[fEdgeIdx]);
TAttLine::Modify();
gPad->PaintPolyLine(np, x, y);
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::DrawFaceMove1(Int_t *icodes, Double_t *xyz, Int_t np,
Int_t *iface, Double_t *tt)
{
// Draw face - 1st variant for "MOVING SCREEN" algorithm
//
// Function: Draw face - 1st variant for "MOVING SCREEN" algorithm
// (draw face with level lines)
//
// References: FindLevelLines, WCtoNDC,
// FindVisibleDraw, ModifyScreen
//
// Input: ICODES(*) - set of codes for the line (not used)
// ICODES(1) - IX
// ICODES(2) - IY
// XYZ(3,*) - coordinates of nodes
// NP - number of nodes
// IFACE(NP) - face
// TT(NP) - additional function defined on this face
// (not used in this routine)
Double_t xdel, ydel;
Int_t i, k, i1, i2, il, it;
Double_t x[2], y[2];
Double_t p1[3], p2[3], p3[36] /* was [3][12] */;
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) return;
// C O P Y P O I N T S T O A R R A Y
/* Parameter adjustments */
--tt;
--iface;
xyz -= 4;
--icodes;
for (i = 1; i <= np; ++i) {
k = iface[i];
p3[i*3 - 3] = xyz[k*3 + 1];
p3[i*3 - 2] = xyz[k*3 + 2];
p3[i*3 - 1] = xyz[k*3 + 3];
}
// F I N D L E V E L L I N E S
FindLevelLines(np, p3, &tt[1]);
// D R A W L E V E L L I N E S
SetLineStyle(3);
if (icodes[3]==0) { // front & back boxes
SetLineColor(1);
SetLineWidth(1);
} else {
SetLineColor(fEdgeColor[fEdgeIdx]);
SetLineWidth(fEdgeWidth[fEdgeIdx]);
}
TAttLine::Modify();
for (il = 1; il <= fNlines; ++il) {
FindVisibleDraw(&fPlines[(2*il + 1)*3 - 9], &fPlines[(2*il + 2)*3 - 9]);
view->WCtoNDC(&fPlines[(2*il + 1)*3 - 9], p1);
view->WCtoNDC(&fPlines[(2*il + 2)*3 - 9], p2);
xdel = p2[0] - p1[0];
ydel = p2[1] - p1[1];
for (it = 1; it <= fNT; ++it) {
x[0] = p1[0] + xdel*fT[2*it - 2];
y[0] = p1[1] + ydel*fT[2*it - 2];
x[1] = p1[0] + xdel*fT[2*it - 1];
y[1] = p1[1] + ydel*fT[2*it - 1];
gPad->PaintPolyLine(2, x, y);
}
}
// D R A W F A C E
if (icodes[3]==0) { // front & back boxes
SetLineColor(1);
SetLineStyle(1);
SetLineWidth(1);
} else {
SetLineColor(fEdgeColor[fEdgeIdx]);
SetLineStyle(fEdgeStyle[fEdgeIdx]);
SetLineWidth(fEdgeWidth[fEdgeIdx]);
}
TAttLine::Modify();
for (i = 1; i <= np; ++i) {
i1 = i;
i2 = i + 1;
if (i == np) i2 = 1;
FindVisibleDraw(&p3[i1*3 - 3], &p3[i2*3 - 3]);
view->WCtoNDC(&p3[i1*3 - 3], p1);
view->WCtoNDC(&p3[i2*3 - 3], p2);
xdel = p2[0] - p1[0];
ydel = p2[1] - p1[1];
for (it = 1; it <= fNT; ++it) {
x[0] = p1[0] + xdel*fT[2*it - 2];
y[0] = p1[1] + ydel*fT[2*it - 2];
x[1] = p1[0] + xdel*fT[2*it - 1];
y[1] = p1[1] + ydel*fT[2*it - 1];
gPad->PaintPolyLine(2, x, y);
}
}
// M O D I F Y S C R E E N
for (i = 1; i <= np; ++i) {
i1 = i;
i2 = i + 1;
if (i == np) i2 = 1;
ModifyScreen(&p3[i1*3 - 3], &p3[i2*3 - 3]);
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::DrawFaceMove3(Int_t *icodes, Double_t *xyz, Int_t np,
Int_t *iface, Double_t *tt)
{
// Draw face - 3rd variant for "MOVING SCREEN" algorithm
//
// Function: Draw face - 1st variant for "MOVING SCREEN" algorithm
// (draw level lines only)
//
// References: FindLevelLines, WCtoNDC,
// FindVisibleDraw, ModifyScreen
//
// Input: ICODES(*) - set of codes for the line (not used)
// ICODES(1) - IX
// ICODES(2) - IY
// XYZ(3,*) - coordinates of nodes
// NP - number of nodes
// IFACE(NP) - face
// TT(NP) - additional function defined on this face
// (not used in this routine)
Double_t xdel, ydel;
Int_t i, k, i1, i2, il, it;
Double_t x[2], y[2];
Double_t p1[3], p2[3], p3[36] /* was [3][12] */;
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) return;
// Parameter adjustments (ftoc)
--tt;
--iface;
xyz -= 4;
--icodes;
// Copy points to array
for (i = 1; i <= np; ++i) {
k = iface[i];
p3[i*3 - 3] = xyz[k*3 + 1];
p3[i*3 - 2] = xyz[k*3 + 2];
p3[i*3 - 1] = xyz[k*3 + 3];
}
// Find level lines
FindLevelLines(np, p3, &tt[1]);
// Draw level lines
if (icodes[3]==0) { // front and back boxes
SetLineColor(1);
SetLineStyle(1);
SetLineWidth(1);
} else {
SetLineColor(fEdgeColor[fEdgeIdx]);
SetLineStyle(fEdgeStyle[fEdgeIdx]);
SetLineWidth(fEdgeWidth[fEdgeIdx]);
}
TAttLine::Modify();
for (il = 1; il <= fNlines; ++il) {
FindVisibleDraw(&fPlines[(2*il + 1)*3 - 9], &fPlines[(2*il + 2)*3 - 9]);
view->WCtoNDC(&fPlines[(2*il + 1)*3 - 9], p1);
view->WCtoNDC(&fPlines[(2*il + 2)*3 - 9], p2);
xdel = p2[0] - p1[0];
ydel = p2[1] - p1[1];
for (it = 1; it <= fNT; ++it) {
x[0] = p1[0] + xdel*fT[2*it - 2];
y[0] = p1[1] + ydel*fT[2*it - 2];
x[1] = p1[0] + xdel*fT[2*it - 1];
y[1] = p1[1] + ydel*fT[2*it - 1];
gPad->PaintPolyLine(2, x, y);
}
}
// Modify screen
for (i = 1; i <= np; ++i) {
i1 = i;
i2 = i + 1;
if (i == np) i2 = 1;
ModifyScreen(&p3[i1*3 - 3], &p3[i2*3 - 3]);
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::DrawFaceMove2(Int_t *icodes, Double_t *xyz, Int_t np, Int_t *iface, Double_t *tt)
{
// Draw face - 2nd variant for "MOVING SCREEN" algorithm
//
// Function: Draw face - 2nd variant for "MOVING SCREEN" algorithm
// (draw face for stacked lego plot)
//
// References: FindLevelLines, WCtoNDC,
// FindVisibleDraw, ModifyScreen
//
// Input: ICODES(*) - set of codes for the line (not used)
// ICODES(1) - IX
// ICODES(2) - IY
// ICODES(3) - line code (N of lego)
// XYZ(3,*) - coordinates of nodes
// NP - number of nodes
// IFACE(NP) - face
// TT(NP) - additional function defined on this face
// (not used in this routine)
Double_t xdel, ydel;
Int_t i, k, i1, i2, it;
Double_t x[2], y[2];
Double_t p1[3], p2[3], p3[36] /* was [3][12] */;
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) return;
// C O P Y P O I N T S T O A R R A Y
/* Parameter adjustments */
--tt;
--iface;
xyz -= 4;
--icodes;
for (i = 1; i <= np; ++i) {
k = iface[i];
p3[i*3 - 3] = xyz[k*3 + 1];
p3[i*3 - 2] = xyz[k*3 + 2];
p3[i*3 - 1] = xyz[k*3 + 3];
}
// D R A W F A C E
if (icodes[3]==0) { // front & back boxes
SetLineColor(1);
SetLineStyle(1);
SetLineWidth(1);
} else {
SetLineColor(fEdgeColor[fEdgeIdx]);
SetLineStyle(fEdgeStyle[fEdgeIdx]);
SetLineWidth(fEdgeWidth[fEdgeIdx]);
}
TAttLine::Modify();
for (i = 1; i <= np; ++i) {
i1 = i;
i2 = i + 1;
if (i == np) i2 = 1;
FindVisibleDraw(&p3[i1*3 - 3], &p3[i2*3 - 3]);
view->WCtoNDC(&p3[i1*3 - 3], p1);
view->WCtoNDC(&p3[i2*3 - 3], p2);
xdel = p2[0] - p1[0];
ydel = p2[1] - p1[1];
for (it = 1; it <= fNT; ++it) {
x[0] = p1[0] + xdel*fT[2*it - 2];
y[0] = p1[1] + ydel*fT[2*it - 2];
x[1] = p1[0] + xdel*fT[2*it - 1];
y[1] = p1[1] + ydel*fT[2*it - 1];
gPad->PaintPolyLine(2, x, y);
}
}
// M O D I F Y S C R E E N
for (i = 1; i <= np; ++i) {
i1 = i;
i2 = i + 1;
if (i == np) i2 = 1;
ModifyScreen(&p3[i1*3 - 3], &p3[i2*3 - 3]);
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::DrawFaceRaster1(Int_t *icodes, Double_t *xyz, Int_t np, Int_t *iface, Double_t *tt)
{
// Draw face - 1st variant for "RASTER SCREEN" algorithm
//
// Function: Draw face - 1st variant for "RASTER SCREEN" algorithm
// (draw face with level lines)
//
// References: FindLevelLines, WCtoNDC,
// FindVisibleLine, FillPolygonBorder
//
// Input: ICODES(*) - set of codes for the line (not used)
// ICODES(1) - IX
// ICODES(2) - IY
// XYZ(3,*) - coordinates of nodes
// NP - number of nodes
// IFACE(NP) - face
// TT(NP) - additional function defined on this face
// (not used in this routine)
Double_t xdel, ydel;
Int_t i, k, i1, i2, il, it;
Double_t x[2], y[2];
Double_t p1[3], p2[3], p3[36] /* was [3][12] */;
Double_t pp[24] /* was [2][12] */;
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) return;
// C O P Y P O I N T S T O A R R A Y
/* Parameter adjustments */
--tt;
--iface;
xyz -= 4;
--icodes;
for (i = 1; i <= np; ++i) {
k = iface[i];
if (k < 0) k = -k;
p3[i*3 - 3] = xyz[k*3 + 1];
p3[i*3 - 2] = xyz[k*3 + 2];
p3[i*3 - 1] = xyz[k*3 + 3];
view->WCtoNDC(&p3[i*3 - 3], &pp[2*i - 2]);
}
// F I N D L E V E L L I N E S
FindLevelLines(np, p3, &tt[1]);
// D R A W L E V E L L I N E S
SetLineStyle(3);
if (icodes[3]==0) { // front & back boxes
SetLineColor(1);
SetLineWidth(1);
} else {
SetLineColor(fEdgeColor[fEdgeIdx]);
SetLineWidth(fEdgeWidth[fEdgeIdx]);
}
TAttLine::Modify();
for (il = 1; il <= fNlines; ++il) {
view->WCtoNDC(&fPlines[(2*il + 1)*3 - 9], p1);
view->WCtoNDC(&fPlines[(2*il + 2)*3 - 9], p2);
FindVisibleLine(p1, p2, 100, fNT, fT);
xdel = p2[0] - p1[0];
ydel = p2[1] - p1[1];
for (it = 1; it <= fNT; ++it) {
x[0] = p1[0] + xdel*fT[2*it - 2];
y[0] = p1[1] + ydel*fT[2*it - 2];
x[1] = p1[0] + xdel*fT[2*it - 1];
y[1] = p1[1] + ydel*fT[2*it - 1];
gPad->PaintPolyLine(2, x, y);
}
}
// D R A W F A C E
if (icodes[3]==0) { // front & back boxes
SetLineColor(1);
SetLineStyle(1);
SetLineWidth(1);
} else {
SetLineColor(fEdgeColor[fEdgeIdx]);
SetLineStyle(fEdgeStyle[fEdgeIdx]);
SetLineWidth(fEdgeWidth[fEdgeIdx]);
}
TAttLine::Modify();
for (i = 1; i <= np; ++i) {
if (iface[i] < 0) continue;
i1 = i;
i2 = i + 1;
if (i == np) i2 = 1;
FindVisibleLine(&pp[2*i1 - 2], &pp[2*i2 - 2], 100, fNT, fT);
xdel = pp[2*i2 - 2] - pp[2*i1 - 2];
ydel = pp[2*i2 - 1] - pp[2*i1 - 1];
for (it = 1; it <= fNT; ++it) {
x[0] = pp[2*i1 - 2] + xdel*fT[2*it - 2];
y[0] = pp[2*i1 - 1] + ydel*fT[2*it - 2];
x[1] = pp[2*i1 - 2] + xdel*fT[2*it - 1];
y[1] = pp[2*i1 - 1] + ydel*fT[2*it - 1];
gPad->PaintPolyLine(2, x, y);
}
}
// M O D I F Y S C R E E N
FillPolygonBorder(np, pp);
}
//______________________________________________________________________________
void TPainter3dAlgorithms::DrawFaceRaster2(Int_t *icodes, Double_t *xyz, Int_t np, Int_t *iface, Double_t *tt)
{
// Draw face - 2nd variant for "RASTER SCREEN" algorithm
//
// Function: Draw face - 2nd variant for "RASTER SCREEN" algorithm
// (draw face for stacked lego plot)
//
// References: WCtoNDC, FindVisibleLine, FillPolygonBorder
//
// Input: ICODES(*) - set of codes for the line (not used)
// ICODES(1) - IX
// ICODES(2) - IY
// ICODES(3) - line code (N of lego)
// XYZ(3,*) - coordinates of nodes
// NP - number of nodes
// IFACE(NP) - face
// TT(NP) - additional function defined on this face
// (not used in this routine)
Double_t xdel, ydel;
Int_t i, k, i1, i2, it;
Double_t p[3], x[2], y[2];
Double_t pp[24] /* was [2][12] */;
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) return;
// C O P Y P O I N T S T O A R R A Y
/* Parameter adjustments */
--tt;
--iface;
xyz -= 4;
--icodes;
for (i = 1; i <= np; ++i) {
k = iface[i];
if (k < 0) k = -k;
view->WCtoNDC(&xyz[k*3 + 1], p);
pp[2*i - 2] = p[0];
pp[2*i - 1] = p[1];
}
// D R A W F A C E
SetLineColor(fEdgeColor[fEdgeIdx]);
SetLineStyle(fEdgeStyle[fEdgeIdx]);
SetLineWidth(fEdgeWidth[fEdgeIdx]);
TAttLine::Modify();
for (i = 1; i <= np; ++i) {
if (iface[i] < 0) continue;
i1 = i;
i2 = i + 1;
if (i == np) i2 = 1;
FindVisibleLine(&pp[2*i1 - 2], &pp[2*i2 - 2], 100, fNT, fT);
xdel = pp[2*i2 - 2] - pp[2*i1 - 2];
ydel = pp[2*i2 - 1] - pp[2*i1 - 1];
for (it = 1; it <= fNT; ++it) {
x[0] = pp[2*i1 - 2] + xdel*fT[2*it - 2];
y[0] = pp[2*i1 - 1] + ydel*fT[2*it - 2];
x[1] = pp[2*i1 - 2] + xdel*fT[2*it - 1];
y[1] = pp[2*i1 - 1] + ydel*fT[2*it - 1];
gPad->PaintPolyLine(2, x, y);
}
}
// M O D I F Y R A S T E R S C R E E N
FillPolygonBorder(np, pp);
}
//______________________________________________________________________________
void TPainter3dAlgorithms::FillPolygon(Int_t n, Double_t *p, Double_t *f)
{
// Fill polygon with function values at vertexes
//
// Input: N - number of vertexes
// P(3,*) - polygon
// F(*) - function values at nodes
//
// Errors: - illegal number of vertexes in polygon
// - illegal call of FillPolygon: no levels
Int_t ilev, i, k, icol, i1, i2, nl, np;
Double_t fmin, fmax;
Double_t x[12], y[12], f1, f2;
Double_t p3[36] /* was [3][12] */;
Double_t funmin, funmax;
/* Parameter adjustments */
--f;
p -= 4;
if (n < 3) {
Error("FillPolygon", "illegal number of vertices in polygon (%d)", n);
return;
}
if (fNlevel == 0) {
// Illegal call of FillPolygon: no levels
return;
}
np = n;
nl = fNlevel;
if (nl < 0) nl = -nl;
fmin = f[1];
fmax = f[1];
for (i = 2; i <= np; ++i) {
if (fmin > f[i]) fmin = f[i];
if (fmax < f[i]) fmax = f[i];
}
funmin = fFunLevel[0] - 1;
if (fmin < funmin) funmin = fmin - 1;
funmax = fFunLevel[nl - 1] + 1;
if (fmax > funmax) funmax = fmax + 1;
// F I N D A N D D R A W S U B P O L Y G O N S
f2 = funmin;
for (ilev = 1; ilev <= nl+1; ++ilev) {
// S E T L E V E L L I M I T S
f1 = f2;
if (ilev == nl + 1) f2 = funmax;
else f2 = fFunLevel[ilev - 1];
if (fmax < f1) return;
if (fmin > f2) continue;
// F I N D S U B P O L Y G O N
k = 0;
for (i = 1; i <= np; ++i) {
i1 = i;
i2 = i + 1;
if (i == np) i2 = 1;
FindPartEdge(&p[i1*3 + 1], &p[i2*3 + 1], f[i1], f[i2], f1, f2, k, p3);
}
// D R A W S U B P O L Y G O N
if (k < 3) continue;
for (i = 1; i <= k; ++i) {
x[i-1] = p3[i*3-3];
y[i-1] = p3[i*3-2];
if (TMath::IsNaN(x[i-1]) || TMath::IsNaN(y[i-1])) return;
}
if (ilev==1) {
icol=gPad->GetFillColor();
} else {
icol = fColorLevel[ilev - 2];
}
SetFillColor(icol);
SetFillStyle(1001);
TAttFill::Modify();
gPad->PaintFillArea(k, x, y);
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::FillPolygonBorder(Int_t nn, Double_t *xy)
{
// Fill a polygon including border ("RASTER SCREEN")
//
// Input: NN - number of polygon nodes
// XY(2,*) - polygon nodes
Int_t kbit, nbit, step, ymin, ymax, test[kLmax], xcur[kLmax], xnex[kLmax],
i, j, k, n, ibase, t, x, y, xscan[24] /* was [2][kLmax] */,
yscan, x1[kLmax+2], y1[kLmax+2], x2[kLmax+2], y2[kLmax+2],
ib, nb, dx, dy, iw, nx, xx, yy, signdx, nstart, xx1, xx2, nxa, nxb;
// T R A N S F E R T O S C R E E N C O O R D I N A T E S
/* Parameter adjustments */
xy -= 3;
if (fIfrast) return;
n = nn;
x1[0] = 0;
y1[0] = 0;
for (i = 1; i <= n; ++i) {
x1[i - 1] = Int_t(fNxrast*((xy[2*i + 1] - fXrast) /fDXrast) - 0.01);
y1[i - 1] = Int_t(fNyrast*((xy[2*i + 2] - fYrast) /fDYrast) - 0.01);
}
x1[n] = x1[0];
y1[n] = y1[0];
// F I N D Y - M I N A N D Y - M A X
// S E T R I G H T E D G E O R I E N T A T I O N
ymin = y1[0];
ymax = y1[0];
for (i = 1; i <= n; ++i) {
if (ymin > y1[i - 1]) ymin = y1[i - 1];
if (ymax < y1[i - 1]) ymax = y1[i - 1];
if (y1[i - 1] <= y1[i]) {x2[i - 1] = x1[i]; y2[i - 1] = y1[i];}
else {
x2[i - 1] = x1[i - 1];
y2[i - 1] = y1[i - 1];
x1[i - 1] = x1[i];
y1[i - 1] = y1[i];
}
}
if (ymin >= fNyrast) return;
if (ymax < 0) return;
if (ymax >= fNyrast) ymax = fNyrast - 1;
// S O R T L I N E S
for (i = 1; i < n; ++i) {
if (y1[i] >= y1[i - 1]) continue;
y = y1[i];
k = 1;
for (j = i - 1; j >= 1; --j) {
if (y < y1[j - 1]) continue;
k = j + 1;
break;
}
x = x1[i];
xx = x2[i];
yy = y2[i];
for (j = i; j >= k; --j) {
x1[j] = x1[j - 1];
y1[j] = y1[j - 1];
x2[j] = x2[j - 1];
y2[j] = y2[j - 1];
}
x1[k - 1] = x;
y1[k - 1] = y;
x2[k - 1] = xx;
y2[k - 1] = yy;
}
// S E T I N I T I A L V A L U E S
for (i = 1; i <= n; ++i) {
xcur[i - 1] = x1[i - 1];
dy = y2[i - 1] - y1[i - 1];
dx = x2[i - 1] - x1[i - 1];
signdx = 1;
if (dx < 0) signdx = -1;
if (dx < 0) dx = -dx;
if (dx <= dy) {
t = -(dy + 1) / 2 + dx;
if (t < 0) {
test[i - 1] = t;
xnex[i - 1] = xcur[i - 1];
} else {
test[i - 1] = t - dy;
xnex[i - 1] = xcur[i - 1] + signdx;
}
} else if (dy != 0) {
step = (dx - 1) / (dy + dy) + 1;
test[i - 1] = step*dy - (dx + 1) / 2 - dx;
xnex[i - 1] = xcur[i - 1] + signdx*step;
}
}
// L O O P O N S C A N L I N E S
nstart = 1;
for (yscan = ymin; yscan <= ymax; ++yscan) {
nx = 0;
nxa = 0;
nxb = kLmax + 1;
for (i = nstart; i <= n; ++i) {
if (y1[i - 1] > yscan) goto L500;
if (y2[i - 1] <= yscan) {
if (i == nstart) ++nstart;
if (y2[i - 1] != yscan)continue;
--nxb;
if (x2[i - 1] >= xcur[i - 1]) {
xscan[2*nxb - 2] = xcur[i - 1];
xscan[2*nxb - 1] = x2[i - 1];
} else {
xscan[2*nxb - 2] = x2[i - 1];
xscan[2*nxb - 1] = xcur[i - 1];
}
continue;
}
// S T O R E C U R R E N T X
// P R E P A R E X F O R N E X T S C A N - L I N E
++nxa;
dy = y2[i - 1] - y1[i - 1];
dx = x2[i - 1] - x1[i - 1];
if (dx >= 0) {
signdx = 1;
xscan[2*nxa - 2] = xcur[i - 1];
xscan[2*nxa - 1] = xnex[i - 1];
if (xscan[2*nxa - 2] != xscan[2*nxa - 1]) {
--xscan[2*nxa - 1];
}
} else {
dx = -dx;
signdx = -1;
xscan[2*nxa - 2] = xnex[i - 1];
xscan[2*nxa - 1] = xcur[i - 1];
if (xscan[2*nxa - 2] != xscan[2*nxa - 1]) {
++xscan[2*nxa - 2];
}
}
xcur[i - 1] = xnex[i - 1];
if (dx <= dy) {
test[i - 1] += dx;
if (test[i - 1] < 0) continue;
test[i - 1] -= dy;
xnex[i - 1] += signdx;
continue;
}
step = dx / dy;
t = test[i - 1] + step*dy;
if (t >= 0) {
test[i - 1] = t - dx;
xnex[i - 1] += signdx*step;
} else {
test[i - 1] = t + dy - dx;
xnex[i - 1] += signdx*(step + 1);
}
}
// S O R T P O I N T S A L O N G X
L500:
if (yscan < 0) continue;
ibase = yscan*fNxrast;
if (nxa >= 2) {
for (i = 1; i < nxa; ++i) {
for (j = i; j >= 1; --j) {
if (xscan[2*j] >= xscan[2*j - 2]) continue;
x = xscan[2*j];
xscan[2*j] = xscan[2*j - 2];
xscan[2*j - 2] = x;
x = xscan[2*j - 1];
xscan[2*j + 1] = xscan[2*j - 1];
xscan[2*j - 1] = x;
}
}
for (i = 1; i <= nxa; i += 2) {
++nx;
xscan[2*nx - 2] = xscan[2*i - 2];
x = xscan[2*i + 1];
if (xscan[2*i - 1] > x) x = xscan[2*i - 1];
xscan[2*nx - 1] = x;
}
}
if (nxb <= kLmax) {
for (i = nxb; i <= kLmax; ++i) {
++nx;
xscan[2*nx - 2] = xscan[2*i - 2];
xscan[2*nx - 1] = xscan[2*i - 1];
}
}
// C O N C A T E N A T E A N D F I L L
while (nx) {
xx1 = xscan[2*nx - 2];
xx2 = xscan[2*nx - 1];
--nx;
k = 1;
while (k <= nx) {
if ((xscan[2*k - 2] <= xx2 + 1) && (xscan[2*k - 1] >= xx1 - 1)) {
if (xscan[2*k - 2] < xx1) xx1 = xscan[2*k - 2];
if (xscan[2*k - 1] > xx2) xx2 = xscan[2*k - 1];
xscan[2*k - 2] = xscan[2*nx - 2];
xscan[2*k - 1] = xscan[2*nx - 1];
--nx;
} else ++k;
}
if (xx1 < 0) xx1 = 0;
if (xx2 >= fNxrast) xx2 = fNxrast - 1;
nbit = xx2 - xx1 + 1;
kbit = ibase + xx1;
iw = kbit / 30;
ib = kbit - iw*30 + 1;
iw = iw + 1;
nb = 30 - ib + 1;
if (nb > nbit) nb = nbit;
fRaster[iw - 1] = fRaster[iw - 1] | fMask[fJmask[nb - 1] + ib - 1];
nbit -= nb;
if (nbit) {
while(nbit > 30) {
fRaster[iw] = fMask[464];
++iw;
nbit += -30;
}
fRaster[iw] = fRaster[iw] | fMask[fJmask[nbit - 1]];
++iw;
}
}
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::FindLevelLines(Int_t np, Double_t *f, Double_t *t)
{
// Find level lines for face
//
// Input: NP - number of nodes
// F(3,NP) - face
// T(NP) - additional function
//
// Error: number of points for line not equal 2
Int_t i, k, i1, i2, il, nl;
Double_t tmin, tmax, d1, d2;
/* Parameter adjustments */
--t;
f -= 4;
/* Function Body */
fNlines = 0;
if (fNlevel == 0) return;
nl = fNlevel;
if (nl < 0) nl = -nl;
// F I N D Tmin A N D Tmax
tmin = t[1];
tmax = t[1];
for (i = 2; i <= np; ++i) {
if (t[i] < tmin) tmin = t[i];
if (t[i] > tmax) tmax = t[i];
}
if (tmin >= fFunLevel[nl - 1]) return;
if (tmax <= fFunLevel[0]) return;
// F I N D L E V E L S L I N E S
for (il = 1; il <= nl; ++il) {
if (tmin >= fFunLevel[il - 1]) continue;
if (tmax <= fFunLevel[il - 1]) return;
if (fNlines >= 200) return;
++fNlines;
fLevelLine[fNlines - 1] = il;
k = 0;
for (i = 1; i <= np; ++i) {
i1 = i;
i2 = i + 1;
if (i == np) i2 = 1;
d1 = t[i1] - fFunLevel[il - 1];
d2 = t[i2] - fFunLevel[il - 1];
if (d1) {
if (d1*d2 < 0) goto L320;
continue;
}
++k;
fPlines[(k + 2*fNlines)*3 - 9] = f[i1*3 + 1];
fPlines[(k + 2*fNlines)*3 - 8] = f[i1*3 + 2];
fPlines[(k + 2*fNlines)*3 - 7] = f[i1*3 + 3];
if (k == 1) continue;
goto L340;
L320:
++k;
d1 /= t[i2] - t[i1];
d2 /= t[i2] - t[i1];
fPlines[(k + 2*fNlines)*3 - 9] = d2*f[i1*3 + 1] - d1*f[i2*3 + 1];
fPlines[(k + 2*fNlines)*3 - 8] = d2*f[i1*3 + 2] - d1*f[i2*3 + 2];
fPlines[(k + 2*fNlines)*3 - 7] = d2*f[i1*3 + 3] - d1*f[i2*3 + 3];
if (k != 1) goto L340;
}
if (k != 2) {
Error("FindLevelLines", "number of points for line not equal 2");
--fNlines;
}
L340:
if (il < 0) return;
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::FindPartEdge(Double_t *p1, Double_t *p2, Double_t f1,
Double_t f2, Double_t fmin,
Double_t fmax, Int_t &kpp, Double_t *pp)
{
// Find part of edge
//
// Function: Find part of edge where function defined on this edge
// has value from FMIN to FMAX
//
// Input: P1(3) - 1st point
// P2(3) - 2nd point
// F1 - function value at 1st point
// F2 - function value at 2nd point
// FMIN - min value of layer
// FMAX - max value of layer
//
// Output: KPP - current number of point
// PP(3,*) - coordinates of new face
Double_t d1, d2;
Int_t k1, k2, kk;
/* Parameter adjustments */
pp -= 4;
--p2;
--p1;
k1 = 0;
if (f1 < fmin) k1 = -2;
if (f1 == fmin) k1 = -1;
if (f1 == fmax) k1 = 1;
if (f1 > fmax) k1 = 2;
k2 = 0;
if (f2 < fmin) k2 = -2;
if (f2 == fmin) k2 = -1;
if (f2 == fmax) k2 = 1;
if (f2 > fmax) k2 = 2;
kk = (k1 + 2)*5 + (k2 + 2) + 1;
// K2: -2 -1 0 +1 +2
// K1: -2 -1 0 +1 +2
switch ((int)kk) {
case 1: return;
case 2: return;
case 3: goto L200;
case 4: goto L200;
case 5: goto L600;
case 6: goto L100;
case 7: goto L100;
case 8: goto L100;
case 9: goto L100;
case 10: goto L500;
case 11: goto L400;
case 12: goto L100;
case 13: goto L100;
case 14: goto L100;
case 15: goto L500;
case 16: goto L400;
case 17: goto L100;
case 18: goto L100;
case 19: goto L100;
case 20: goto L100;
case 21: goto L700;
case 22: goto L300;
case 23: goto L300;
case 24: return;
case 25: return;
}
// 1 - S T P O I N T
L100:
++kpp;
pp[kpp*3 + 1] = p1[1];
pp[kpp*3 + 2] = p1[2];
pp[kpp*3 + 3] = p1[3];
return;
// I N T E R S E C T I O N W I T H Fmin
L200:
++kpp;
d1 = (fmin - f1) / (f1 - f2);
d2 = (fmin - f2) / (f1 - f2);
pp[kpp*3 + 1] = d2*p1[1] - d1*p2[1];
pp[kpp*3 + 2] = d2*p1[2] - d1*p2[2];
pp[kpp*3 + 3] = d2*p1[3] - d1*p2[3];
return;
// I N T E R S E C T I O N W I T H Fmax
L300:
++kpp;
d1 = (fmax - f1) / (f1 - f2);
d2 = (fmax - f2) / (f1 - f2);
pp[kpp*3 + 1] = d2*p1[1] - d1*p2[1];
pp[kpp*3 + 2] = d2*p1[2] - d1*p2[2];
pp[kpp*3 + 3] = d2*p1[3] - d1*p2[3];
return;
// 1 - S T P O I N T, I N T E R S E C T I O N WITH Fmin
L400:
++kpp;
pp[kpp*3 + 1] = p1[1];
pp[kpp*3 + 2] = p1[2];
pp[kpp*3 + 3] = p1[3];
++kpp;
d1 = (fmin - f1) / (f1 - f2);
d2 = (fmin - f2) / (f1 - f2);
pp[kpp*3 + 1] = d2*p1[1] - d1*p2[1];
pp[kpp*3 + 2] = d2*p1[2] - d1*p2[2];
pp[kpp*3 + 3] = d2*p1[3] - d1*p2[3];
return;
// 1 - S T P O I N T, I N T E R S E C T I O N WITH Fmax
L500:
++kpp;
pp[kpp*3 + 1] = p1[1];
pp[kpp*3 + 2] = p1[2];
pp[kpp*3 + 3] = p1[3];
++kpp;
d1 = (fmax - f1) / (f1 - f2);
d2 = (fmax - f2) / (f1 - f2);
pp[kpp*3 + 1] = d2*p1[1] - d1*p2[1];
pp[kpp*3 + 2] = d2*p1[2] - d1*p2[2];
pp[kpp*3 + 3] = d2*p1[3] - d1*p2[3];
return;
// I N T E R S E C T I O N W I T H Fmin, Fmax
L600:
++kpp;
d1 = (fmin - f1) / (f1 - f2);
d2 = (fmin - f2) / (f1 - f2);
pp[kpp*3 + 1] = d2*p1[1] - d1*p2[1];
pp[kpp*3 + 2] = d2*p1[2] - d1*p2[2];
pp[kpp*3 + 3] = d2*p1[3] - d1*p2[3];
++kpp;
d1 = (fmax - f1) / (f1 - f2);
d2 = (fmax - f2) / (f1 - f2);
pp[kpp*3 + 1] = d2*p1[1] - d1*p2[1];
pp[kpp*3 + 2] = d2*p1[2] - d1*p2[2];
pp[kpp*3 + 3] = d2*p1[3] - d1*p2[3];
return;
// I N T E R S E C T I O N W I T H Fmax, Fmin
L700:
++kpp;
d1 = (fmax - f1) / (f1 - f2);
d2 = (fmax - f2) / (f1 - f2);
pp[kpp*3 + 1] = d2*p1[1] - d1*p2[1];
pp[kpp*3 + 2] = d2*p1[2] - d1*p2[2];
pp[kpp*3 + 3] = d2*p1[3] - d1*p2[3];
++kpp;
d1 = (fmin - f1) / (f1 - f2);
d2 = (fmin - f2) / (f1 - f2);
pp[kpp*3 + 1] = d2*p1[1] - d1*p2[1];
pp[kpp*3 + 2] = d2*p1[2] - d1*p2[2];
pp[kpp*3 + 3] = d2*p1[3] - d1*p2[3];
}
//______________________________________________________________________________
void TPainter3dAlgorithms::FindVisibleDraw(Double_t *r1, Double_t *r2)
{
// Find visible parts of line (draw line)
//
// Input: R1(3) - 1-st point of the line
// R2(3) - 2-nd point of the line
Double_t yy1u, yy2u;
Int_t i, icase, i1, i2, icase1, icase2, iv, ifback;
Double_t x1, x2, y1, y2, z1, z2, dd, di;
Double_t dt, dy;
Double_t tt, uu, ww, yy, yy1, yy2, yy1d, yy2d;
Double_t *tn = 0;
const Double_t kEpsil = 1.e-6;
/* Parameter adjustments */
--r2;
--r1;
TView *view = 0;
if (gPad) view = gPad->GetView();
if (view) {
tn = view->GetTN();
if (tn) {
x1 = tn[0]*r1[1] + tn[1]*r1[2] + tn[2]*r1[3] + tn[3];
x2 = tn[0]*r2[1] + tn[1]*r2[2] + tn[2]*r2[3] + tn[3];
y1 = tn[4]*r1[1] + tn[5]*r1[2] + tn[6]*r1[3] + tn[7];
y2 = tn[4]*r2[1] + tn[5]*r2[2] + tn[6]*r2[3] + tn[7];
z1 = tn[8]*r1[1] + tn[9]*r1[2] + tn[10]*r1[3] + tn[11];
z2 = tn[8]*r2[1] + tn[9]*r2[2] + tn[10]*r2[3] + tn[11];
} else {
Error("FindVisibleDraw", "invalid TView in current pad");
return;
}
} else {
Error("FindVisibleDraw", "no TView in current pad");
return;
}
ifback = 0;
if (x1 >= x2) {
ifback = 1;
ww = x1;
x1 = x2;
x2 = ww;
ww = y1;
y1 = y2;
y2 = ww;
ww = z1;
z1 = z2;
z2 = ww;
}
fNT = 0;
i1 = Int_t((x1 - fX0) / fDX) + 15;
i2 = Int_t((x2 - fX0) / fDX) + 15;
x1 = fX0 + (i1 - 1)*fDX;
x2 = fX0 + (i2 - 1)*fDX;
if (i1 != i2) {
// F I N D V I S I B L E P A R T S O F T H E L I N E
di = (Double_t) (i2 - i1);
dy = (y2 - y1) / di;
dt = 1 / di;
iv = -1;
for (i = i1; i <= i2 - 1; ++i) {
yy1 = y1 + dy*(i - i1);
yy2 = yy1 + dy;
yy1u = yy1 - fU[2*i - 2];
yy1d = yy1 - fD[2*i - 2];
yy2u = yy2 - fU[2*i - 1];
yy2d = yy2 - fD[2*i - 1];
tt = dt*(i - i1);
// A N A L I Z E L E F T S I D E
icase1 = 1;
if (yy1u > kEpsil) icase1 = 0;
if (yy1d < -kEpsil) icase1 = 2;
if ((icase1 == 0 || icase1 == 2) && iv <= 0) {
iv = 1;
++fNT;
fT[2*fNT - 2] = tt;
}
if (icase1 == 1 && iv >= 0) {
iv = -1;
fT[2*fNT - 1] = tt;
}
// A N A L I Z E R I G H T S I D E
icase2 = 1;
if (yy2u > kEpsil) icase2 = 0;
if (yy2d < -kEpsil) icase2 = 2;
icase = icase1*3 + icase2;
if (icase == 1) {
iv = -1;
fT[2*fNT - 1] = tt + dt*(yy1u / (yy1u - yy2u));
}
if (icase == 2) {
fT[2*fNT - 1] = tt + dt*(yy1u / (yy1u - yy2u));
++fNT;
fT[2*fNT - 2] = tt + dt*(yy1d / (yy1d - yy2d));
}
if (icase == 3) {
iv = 1;
++fNT;
fT[2*fNT - 2] = tt + dt*(yy1u / (yy1u - yy2u));
}
if (icase == 5) {
iv = 1;
++fNT;
fT[2*fNT - 2] = tt + dt*(yy1d / (yy1d - yy2d));
}
if (icase == 6) {
fT[2*fNT - 1] = tt + dt*(yy1d / (yy1d - yy2d));
++fNT;
fT[2*fNT - 2] = tt + dt*(yy1u / (yy1u - yy2u));
}
if (icase == 7) {
iv = -1;
fT[2*fNT - 1] = tt + dt*(yy1d / (yy1d - yy2d));
}
if (fNT + 1 >= 100) break;
}
if (iv > 0) fT[2*fNT - 1] = 1;
} else {
// V E R T I C A L L I N E
fNT = 1;
fT[0] = 0;
fT[1] = 1;
if (y2 <= y1) {
if (y2 == y1) { fNT = 0; return;}
ifback = 1 - ifback;
yy = y1;
y1 = y2;
y2 = yy;
}
uu = fU[2*i1 - 2];
dd = fD[2*i1 - 2];
if (i1 != 1) {
if (uu < fU[2*i1 - 3]) uu = fU[2*i1 - 3];
if (dd > fD[2*i1 - 3]) dd = fD[2*i1 - 3];
}
// F I N D V I S I B L E P A R T O F L I N E
if (y1 < uu && y2 > dd) {
if (y1 >= dd && y2 <= uu) {fNT = 0; return;}
fNT = 0;
if (dd > y1) {
++fNT;
fT[2*fNT - 2] = 0;
fT[2*fNT - 1] = (dd - y1) / (y2 - y1);
}
if (uu < y2) {
++fNT;
fT[2*fNT - 2] = (uu - y1) / (y2 - y1);
fT[2*fNT - 1] = 1;
}
}
}
if (ifback == 0) return;
if (fNT == 0) return;
for (i = 1; i <= fNT; ++i) {
fT[2*i - 2] = 1 - fT[2*i - 2];
fT[2*i - 1] = 1 - fT[2*i - 1];
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::FindVisibleLine(Double_t *p1, Double_t *p2, Int_t ntmax, Int_t &nt, Double_t *t)
{
// Find visible part of a line ("RASTER SCREEN")
//
// Input: P1(2) - 1st point of the line
// P2(2) - 2nd point of the line
// NTMAX - max allowed number of visible segments
//
// Output: NT - number of visible segments of the line
// T(2,*) - visible segments
Double_t ddtt;
Double_t tcur;
Int_t i, incrx, ivis, x1, y1, x2, y2, ib, kb, dx, dy, iw, ix, iy, ifinve, dx2, dy2;
Double_t t1, t2;
Double_t dt;
Double_t tt;
/* Parameter adjustments */
t -= 3;
--p2;
--p1;
if (fIfrast) {
nt = 1;
t[3] = 0;
t[4] = 1;
return;
}
x1 = Int_t(fNxrast*((p1[1] - fXrast) / fDXrast) - 0.01);
y1 = Int_t(fNyrast*((p1[2] - fYrast) / fDYrast) - 0.01);
x2 = Int_t(fNxrast*((p2[1] - fXrast) / fDXrast) - 0.01);
y2 = Int_t(fNyrast*((p2[2] - fYrast) / fDYrast) - 0.01);
ifinve = 0;
if (y1 > y2) {
ifinve = 1;
iw = x1;
x1 = x2;
x2 = iw;
iw = y1;
y1 = y2;
y2 = iw;
}
nt = 0;
ivis = 0;
if (y1 >= fNyrast) return;
if (y2 < 0) return;
if (x1 >= fNxrast && x2 >= fNxrast) return;
if (x1 < 0 && x2 < 0) return;
// S E T I N I T I A L V A L U E S
incrx = 1;
dx = x2 - x1;
if (dx < 0) {
dx = -dx;
incrx = -1;
}
dy = y2 - y1;
dx2 = dx + dx;
dy2 = dy + dy;
if (dy > dx) goto L200;
// D X . G T . D Y
dt = 1./ (Double_t)(dx + 1.);
ddtt = dt*(float).5;
tcur = -(Double_t)dt;
tt = (Double_t) (-(dx + dy2));
iy = y1;
kb = iy*fNxrast + x1 - incrx;
for (ix = x1; incrx < 0 ? ix >= x2 : ix <= x2; ix += incrx) {
kb += incrx;
tcur += dt;
tt += dy2;
if (tt >= 0) {
++iy;
tt -= dx2;
kb += fNxrast;
}
if (iy < 0) goto L110;
if (iy >= fNyrast) goto L110;
if (ix < 0) goto L110;
if (ix >= fNxrast) goto L110;
iw = kb / 30;
ib = kb - iw*30 + 1;
if (fRaster[iw] & fMask[ib - 1]) goto L110;
if (ivis > 0) continue;
ivis = 1;
++nt;
t[2*nt + 1] = tcur;
continue;
L110:
if (ivis == 0) continue;
ivis = 0;
t[2*nt + 2] = tcur;
if (nt == ntmax) goto L300;
}
if (ivis > 0) t[2*nt + 2] = tcur + dt + ddtt;
goto L300;
// D Y . G T . D X
L200:
dt = 1. / (Double_t)(dy + 1.);
ddtt = dt*(float).5;
tcur = -(Double_t)dt;
tt = (Double_t) (-(dy + dx2));
ix = x1;
if (y2 >= fNyrast) y2 = fNyrast - 1;
kb = (y1 - 1)*fNxrast + ix;
for (iy = y1; iy <= y2; ++iy) {
kb += fNxrast;
tcur += dt;
tt += dx2;
if (tt >= 0) {
ix += incrx;
tt -= dy2;
kb += incrx;
}
if (iy < 0) goto L210;
if (ix < 0) goto L210;
if (ix >= fNxrast) goto L210;
iw = kb / 30;
ib = kb - iw*30 + 1;
if (fRaster[iw] & fMask[ib - 1]) goto L210;
if (ivis > 0) continue;
ivis = 1;
++nt;
t[2*nt + 1] = tcur;
continue;
L210:
if (ivis == 0) continue;
ivis = 0;
t[2*nt + 2] = tcur;
if (nt == ntmax) goto L300;
}
if (ivis > 0) t[2*nt + 2] = tcur + dt;
// C H E C K D I R E C T I O N O F P A R A M E T E R
L300:
if (nt == 0) return;
dt *= 1.1;
if (t[3] <= dt) t[3] = 0;
if (t[2*nt + 2] >= 1 - dt) t[2*nt + 2] = 1;
if (ifinve == 0) return;
for (i = 1; i <= nt; ++i) {
t1 = t[2*i + 1];
t2 = t[2*i + 2];
t[2*i + 1] = 1 - t2;
t[2*i + 2] = 1 - t1;
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::FrontBox(Double_t ang)
{
// Draw forward faces of surrounding box & axes
//
// Function: Draw forward faces of surrounding box & axes
//
// References: AxisVertex, Gaxis
//
// Input ANG - angle between X and Y axis
//
// DRFACE(ICODES,XYZ,NP,IFACE,T) - routine for face drawing
// ICODES(*) - set of codes for this face
// NP - number of nodes in face
// IFACE(NP) - face
// T(NP) - additional function
/* Initialized data */
static Int_t iface1[4] = { 1,2,6,5 };
static Int_t iface2[4] = { 2,3,7,6 };
Double_t cosa, sina;
Double_t r[24] /* was [3][8] */, av[24] /* was [3][8] */;
Int_t icodes[3];
Double_t fdummy[1];
Int_t i, ix1, ix2, iy1, iy2, iz1, iz2;
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) {
Error("FrontBox", "no TView in current pad");
return;
}
cosa = TMath::Cos(kRad*ang);
sina = TMath::Sin(kRad*ang);
view->AxisVertex(ang, av, ix1, ix2, iy1, iy2, iz1, iz2);
for (i = 1; i <= 8; ++i) {
r[i*3 - 3] = av[i*3 - 3] + av[i*3 - 2] * cosa;
r[i*3 - 2] = av[i*3 - 2] * sina;
r[i*3 - 1] = av[i*3 - 1];
}
// D R A W F O R W A R D F A C E S
icodes[0] = 0;
icodes[1] = 0;
icodes[2] = 0;
(this->*fDrawFace)(icodes, r, 4, iface1, fdummy);
(this->*fDrawFace)(icodes, r, 4, iface2, fdummy);
}
//______________________________________________________________________________
void TPainter3dAlgorithms::GouraudFunction(Int_t ia, Int_t ib, Double_t *face, Double_t *t)
{
// Find part of surface with luminosity in the corners
//
// This routine is used for Gouraud shading
Int_t iphi;
static Double_t f[108]; /* was [3][4][3][3] */
Int_t i, j, k;
Double_t r, s, x[36]; /* was [4][3][3] */
Double_t y[36]; /* was [4][3][3] */
Double_t z[36]; /* was [4][3][3] */
Int_t incrx[3], incry[3];
Double_t x1, x2, y1, y2, z1, z2, th, an[27]; /* was [3][3][3] */
Double_t bn[12]; /* was [3][2][2] */
Double_t rad;
Double_t phi;
Int_t ixt, iyt;
/* Parameter adjustments */
--t;
face -= 4;
iphi = 1;
rad = TMath::ATan(1) * (float)4 / (float)180;
// Find real cell indexes
ixt = ia + Hparam.xfirst - 1;
iyt = ib + Hparam.yfirst - 1;
// Find increments of neighboring cells
incrx[0] = -1;
incrx[1] = 0;
incrx[2] = 1;
if (ixt == 1) incrx[0] = 0;
if (ixt == Hparam.xlast - 1) incrx[2] = 0;
incry[0] = -1;
incry[1] = 0;
incry[2] = 1;
if (iyt == 1) incry[0] = 0;
if (iyt == Hparam.ylast - 1) incry[2] = 0;
// Find neighboring faces
Int_t i1, i2;
for (j = 1; j <= 3; ++j) {
for (i = 1; i <= 3; ++i) {
i1 = ia + incrx[i - 1];
i2 = ib + incry[j - 1];
SurfaceFunction(i1, i2, &f[(((i + j*3) << 2) + 1)*3 - 51], &t[1]);
}
}
// Set face
for (k = 1; k <= 4; ++k) {
for (i = 1; i <= 3; ++i) {
face[i + k*3] = f[i + (k + 32)*3 - 52];
}
}
// Find coordinates and normales
for (j = 1; j <= 3; ++j) {
for (i = 1; i <= 3; ++i) {
for (k = 1; k <= 4; ++k) {
if (Hoption.System == kPOLAR) {
phi = f[iphi + (k + ((i + j*3) << 2))*3 - 52]*rad;
r = f[3 - iphi + (k + ((i + j*3) << 2))*3 - 52];
x[k + ((i + j*3) << 2) - 17] = r * TMath::Cos(phi);
y[k + ((i + j*3) << 2) - 17] = r * TMath::Sin(phi);
z[k + ((i + j*3) << 2) - 17] = f[(k + ((i + j*3) << 2))*3 - 49];
} else if (Hoption.System == kCYLINDRICAL) {
phi = f[iphi + (k + ((i + j*3) << 2))*3 - 52]*rad;
r = f[(k + ((i + j*3) << 2))*3 - 49];
x[k + ((i + j*3) << 2) - 17] = r*TMath::Cos(phi);
y[k + ((i + j*3) << 2) - 17] = r*TMath::Sin(phi);
z[k + ((i + j*3) << 2) - 17] = f[3 - iphi + (k + ((i + j*3) << 2))*3 - 52];
} else if (Hoption.System == kSPHERICAL) {
phi = f[iphi + (k + ((i + j*3) << 2))*3 - 52]*rad;
th = f[3 - iphi + (k + ((i + j*3) << 2))*3 - 52]*rad;
r = f[(k + ((i + j*3) << 2))*3 - 49];
x[k + ((i + j*3) << 2) - 17] = r*TMath::Sin(th)*TMath::Cos(phi);
y[k + ((i + j*3) << 2) - 17] = r*TMath::Sin(th)*TMath::Sin(phi);
z[k + ((i + j*3) << 2) - 17] = r*TMath::Cos(th);
} else if (Hoption.System == kRAPIDITY) {
phi = f[iphi + (k + ((i + j*3) << 2))*3 - 52]*rad;
th = f[3 - iphi + (k + ((i + j*3) << 2))*3 - 52]*rad;
r = f[(k + ((i + j*3) << 2))*3 - 49];
x[k + ((i + j*3) << 2) - 17] = r*TMath::Cos(phi);
y[k + ((i + j*3) << 2) - 17] = r*TMath::Sin(phi);
z[k + ((i + j*3) << 2) - 17] = r*TMath::Cos(th) / TMath::Sin(th);
} else {
x[k + ((i + j*3) << 2) - 17] = f[(k + ((i + j*3) << 2))*3 - 51];
y[k + ((i + j*3) << 2) - 17] = f[(k + ((i + j*3) << 2))*3 - 50];
z[k + ((i + j*3) << 2) - 17] = f[(k + ((i + j*3) << 2))*3 - 49];
}
}
x1 = x[((i + j*3) << 2) - 14] - x[((i + j*3) << 2) - 16];
x2 = x[((i + j*3) << 2) - 13] - x[((i + j*3) << 2) - 15];
y1 = y[((i + j*3) << 2) - 14] - y[((i + j*3) << 2) - 16];
y2 = y[((i + j*3) << 2) - 13] - y[((i + j*3) << 2) - 15];
z1 = z[((i + j*3) << 2) - 14] - z[((i + j*3) << 2) - 16];
z2 = z[((i + j*3) << 2) - 13] - z[((i + j*3) << 2) - 15];
an[(i + j*3)*3 - 12] = y1*z2 - y2*z1;
an[(i + j*3)*3 - 11] = z1*x2 - z2*x1;
an[(i + j*3)*3 - 10] = x1*y2 - x2*y1;
s = TMath::Sqrt(an[(i + j*3)*3 - 12]*an[(i + j*3)*3 - 12] + an[
(i + j*3)*3 - 11]*an[(i + j*3)*3 - 11] + an[(i
+ j*3)*3 - 10]*an[(i + j*3)*3 - 10]);
an[(i + j*3)*3 - 12] /= s;
an[(i + j*3)*3 - 11] /= s;
an[(i + j*3)*3 - 10] /= s;
}
}
// Find average normals
for (j = 1; j <= 2; ++j) {
for (i = 1; i <= 2; ++i) {
for (k = 1; k <= 3; ++k) {
bn[k + (i + 2*j)*3 - 10] = an[k + (i + j*3)*3 - 13]
+ an[k + (i + 1 + j*3)*3 - 13] + an[k + (i + 1 +
(j + 1)*3)*3 - 13] + an[k + (i + (j + 1)*3)*3 - 13];
}
}
}
// Set luminosity
Luminosity(bn, t[1]);
Luminosity(&bn[3], t[2]);
Luminosity(&bn[9], t[3]);
Luminosity(&bn[6], t[4]);
}
//______________________________________________________________________________
void TPainter3dAlgorithms::InitMoveScreen(Double_t xmin, Double_t xmax)
{
// Initialize "MOVING SCREEN" method
//
// Input: XMIN - left boundary
// XMAX - right boundary
fX0 = xmin;
fDX = (xmax - xmin) / 1000;
for (Int_t i = 1; i <= 1000; ++i) {
fU[2*i - 2] = (float)-999;
fU[2*i - 1] = (float)-999;
fD[2*i - 2] = (float)999;
fD[2*i - 1] = (float)999;
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::InitRaster(Double_t xmin, Double_t ymin, Double_t xmax, Double_t ymax, Int_t nx, Int_t ny )
{
// Initialize hidden lines removal algorithm (RASTER SCREEN)
//
// Input: XMIN - Xmin in the normalized coordinate system
// YMIN - Ymin in the normalized coordinate system
// XMAX - Xmax in the normalized coordinate system
// YMAX - Ymax in the normalized coordinate system
// NX - number of pixels along X
// NY - number of pixels along Y
Int_t i, j, k, ib, nb;
fNxrast = nx;
fNyrast = ny;
fXrast = xmin;
fDXrast = xmax - xmin;
fYrast = ymin;
fDYrast = ymax - ymin;
// Create buffer for raster
Int_t buffersize = nx*ny/30 + 1;
fRaster = new Int_t[buffersize];
// S E T M A S K S
k = 0;
Int_t pow2 = 1;
for (i = 1; i <= 30; ++i) {
fJmask[i - 1] = k;
k = k + 30 - i + 1;
fMask[i - 1] = pow2;
pow2 *= 2;
}
j = 30;
for (nb = 2; nb <= 30; ++nb) {
for (ib = 1; ib <= 30 - nb + 1; ++ib) {
k = 0;
for (i = ib; i <= ib + nb - 1; ++i) k = k | fMask[i - 1];
++j;
fMask[j - 1] = k;
}
}
// C L E A R R A S T E R S C R E E N
ClearRaster();
}
//______________________________________________________________________________
void TPainter3dAlgorithms::LegoFunction(Int_t ia, Int_t ib, Int_t &nv, Double_t *ab, Double_t *vv, Double_t *t)
{
// Service function for Legos
Int_t i, j, ixt, iyt;
Double_t yval1l, yval2l;
Double_t xlab1l, xlab2l, ylab1l, ylab2l;
Double_t rinrad = gStyle->GetLegoInnerR();
Double_t dangle = 10; //Delta angle for Rapidity option
/* Parameter adjustments */
t -= 5;
--vv;
ab -= 3;
ixt = ia + Hparam.xfirst - 1;
iyt = ib + Hparam.yfirst - 1;
// Compute the cell position in cartesian coordinates
// and compute the LOG if necessary
Double_t xwid = gCurrentHist->GetXaxis()->GetBinWidth(ixt);
Double_t ywid = gCurrentHist->GetYaxis()->GetBinWidth(iyt);
ab[3] = gCurrentHist->GetXaxis()->GetBinLowEdge(ixt) + xwid*Hparam.baroffset;
ab[4] = gCurrentHist->GetYaxis()->GetBinLowEdge(iyt) + ywid*Hparam.baroffset;
ab[5] = ab[3] + xwid*Hparam.barwidth;
ab[8] = ab[4] + ywid*Hparam.barwidth;
if (Hoption.Logx) {
if (ab[3] > 0) ab[3] = TMath::Log10(ab[3]);
else ab[3] = Hparam.xmin;
if (ab[5] > 0) ab[5] = TMath::Log10(ab[5]);
else ab[5] = Hparam.xmin;
}
// xval1l = Hparam.xmin;
// xval2l = Hparam.xmax;
if (Hoption.Logy) {
if (ab[4] > 0) ab[4] = TMath::Log10(ab[4]);
else ab[4] = Hparam.ymin;
if (ab[8] > 0) ab[8] = TMath::Log10(ab[8]);
else ab[8] = Hparam.ymin;
}
yval1l = Hparam.ymin;
yval2l = Hparam.ymax;
if (ab[3] < Hparam.xmin) ab[3] = Hparam.xmin;
if (ab[4] < Hparam.ymin) ab[4] = Hparam.ymin;
if (ab[5] > Hparam.xmax) ab[5] = Hparam.xmax;
if (ab[8] > Hparam.ymax) ab[8] = Hparam.ymax;
if (ab[5] < Hparam.xmin) ab[5] = Hparam.xmin;
if (ab[8] < Hparam.ymin) ab[8] = Hparam.ymin;
xlab1l = gCurrentHist->GetXaxis()->GetXmin();
xlab2l = gCurrentHist->GetXaxis()->GetXmax();
if (Hoption.Logx) {
if (xlab2l>0) {
if (xlab1l>0) xlab1l = TMath::Log10(xlab1l);
else xlab1l = TMath::Log10(0.001*xlab2l);
xlab2l = TMath::Log10(xlab2l);
}
}
ylab1l = gCurrentHist->GetYaxis()->GetXmin();
ylab2l = gCurrentHist->GetYaxis()->GetXmax();
if (Hoption.Logy) {
if (ylab2l>0) {
if (ylab1l>0) ylab1l = TMath::Log10(ylab1l);
else ylab1l = TMath::Log10(0.001*ylab2l);
ylab2l = TMath::Log10(ylab2l);
}
}
// Transform the cell position in the required coordinate system
if (Hoption.System == kPOLAR) {
ab[3] = 360*(ab[3] - xlab1l) / (xlab2l - xlab1l);
ab[5] = 360*(ab[5] - xlab1l) / (xlab2l - xlab1l);
ab[4] = (ab[4] - yval1l) / (yval2l - yval1l);
ab[8] = (ab[8] - yval1l) / (yval2l - yval1l);
} else if (Hoption.System == kCYLINDRICAL) {
ab[3] = 360*(ab[3] - xlab1l) / (xlab2l - xlab1l);
ab[5] = 360*(ab[5] - xlab1l) / (xlab2l - xlab1l);
} else if (Hoption.System == kSPHERICAL) {
ab[3] = 360*(ab[3] - xlab1l) / (xlab2l - xlab1l);
ab[5] = 360*(ab[5] - xlab1l) / (xlab2l - xlab1l);
ab[4] = 180*(ab[4] - ylab1l) / (ylab2l - ylab1l);
ab[8] = 180*(ab[8] - ylab1l) / (ylab2l - ylab1l);
} else if (Hoption.System == kRAPIDITY) {
ab[3] = 360*(ab[3] - xlab1l) / (xlab2l - xlab1l);
ab[5] = 360*(ab[5] - xlab1l) / (xlab2l - xlab1l);
ab[4] = (180 - dangle*2)*(ab[4] - ylab1l) / (ylab2l - ylab1l) + dangle;
ab[8] = (180 - dangle*2)*(ab[8] - ylab1l) / (ylab2l - ylab1l) + dangle;
}
// Complete the cell coordinates
ab[6] = ab[4];
ab[7] = ab[5];
ab[9] = ab[3];
ab[10] = ab[8];
// Get the content of the table, and loop on the
// stack if necessary.
vv[1] = Hparam.zmin;
vv[2] = Hparam.factor*gCurrentHist->GetBinContent(ixt, iyt);
// In linear scale, 3D boxes all start from 0.
if (Hparam.zmin<0 && !Hoption.Logz && gStyle->GetHistMinimumZero()) {
if (vv[2]<0) {
vv[1] = vv[2];
vv[2] = 0;
} else {
vv[1]=0;
}
}
TList *stack = gCurrentHist->GetPainter()->GetStack();
Int_t nids = 0; //not yet implemented
if (stack) nids = stack->GetSize();
if (nids) {
for (i = 2; i <= nids + 1; ++i) {
TH1 *hid = (TH1*)stack->At(i-2);
vv[i + 1] = Hparam.factor*hid->GetBinContent(ixt, iyt) + vv[i];
vv[i + 1] = TMath::Max(Hparam.zmin, vv[i + 1]);
//vv[i + 1] = TMath::Min(Hparam.zmax, vv[i + 1]);
}
}
nv = nids + 2;
for (i = 2; i <= nv; ++i) {
if (Hoption.Logz) {
if (vv[i] > 0)
vv[i] = TMath::Max(Hparam.zmin, (Double_t)TMath::Log10(vv[i]));
else
vv[i] = Hparam.zmin;
vv[i] = TMath::Min(vv[i], Hparam.zmax);
} else {
vv[i] = TMath::Max(Hparam.zmin, vv[i]);
vv[i] = TMath::Min(Hparam.zmax, vv[i]);
}
}
if (!Hoption.Logz) {
i = 3;
while (i <= nv) {
if (vv[i] < vv[i - 1]) {
vv[i - 1] = vv[i];
i = 3;
continue;
}
++i;
}
}
// For cylindrical, spherical and pseudo-rapidity, the content
// is mapped onto the radius
if (Hoption.System == kCYLINDRICAL || Hoption.System == kSPHERICAL || Hoption.System == kRAPIDITY) {
for (i = 1; i <= nv; ++i) {
vv[i] = (1 - rinrad)*((vv[i] - Hparam.zmin) /
(Hparam.zmax - Hparam.zmin)) + rinrad;
}
}
for (i = 1; i <= nv; ++i) {
for (j = 1; j <= 4; ++j) t[j + (i << 2)] = vv[i];
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::LegoCartesian(Double_t ang, Int_t nx, Int_t ny, const char *chopt)
{
// Draw stack of lego-plots in cartesian coordinates
//
// Input: ANG - angle between X ang Y
// NX - number of cells along X
// NY - number of cells along Y
//
// FUN(IX,IY,NV,XY,V,T) - external routine
// IX - X number of the cell
// IY - Y number of the cell
// NV - number of values for given cell
// XY(2,4)- coordinates of the cell corners
// V(NV) - cell values
// T(4,NV)- additional function (for example: temperature)
//
// DRFACE(ICODES,XYZ,NP,IFACE,T) - routine for face drawing
// ICODES(*) - set of codes for this line
// ICODES(1) - IX
// ICODES(2) - IY
// ICODES(3) - IV
// ICODES(4) - side: 1-face,2-right,3-back,4-left,
// 5-bottom, 6-top
// XYZ(3,*) - coordinates of nodes
// NP - number of nodes
// IFACE(NP) - face
// T(4) - additional function (here Z-coordinate)
//
// CHOPT - options: 'BF' - from BACK to FRONT
// 'FB' - from FRONT to BACK
//
//Begin_Html
/*
*/
//End_Html
// Local variables
Double_t cosa, sina;
Int_t ivis[4], iface[4];
Double_t tface[4];
Int_t incrx, incry, i1, k1, k2, ix1, iy1, ix2, iy2, i, iv, ix, iy, nv;
Int_t icodes[4];
Double_t zn, xy[8]; // was [2][4]
Double_t xyz[24]; // was [3][8]
Double_t *tn = 0;
TView *view = 0;
Int_t firstStackNumberDrawn=-1 ; // necessary to compute fColorBottom when the 0 option is set and when the stack is seen from below (bottomview, theta<0.)
sina = TMath::Sin(ang*kRad);
cosa = TMath::Cos(ang*kRad);
// F I N D T H E M O S T L E F T P O I N T
if (gPad) view = gPad->GetView();
if (!view) {
Error("LegoCartesian", "no TView in current pad");
return;
}
tn = view->GetTN();
i1 = 1;
if (tn) {
if (tn[0] < 0) i1 = 2;
if (tn[0]*cosa + tn[1]*sina < 0) i1 = 5 - i1;
}
// Allocate v and tt arrays
Double_t *v, *tt;
Int_t vSize = fNStack+2;
if (vSize > kVSizeMax) {
v = new Double_t[vSize];
tt = new Double_t[4*vSize];
} else {
vSize = kVSizeMax;
v = &gV[0];
tt = &gTT[0];
}
// D E F I N E O R D E R O F D R A W I N G
if (*chopt == 'B' || *chopt == 'b') {
incrx = -1;
incry = -1;
} else {
incrx = 1;
incry = 1;
}
if (i1 == 1 || i1 == 2) incrx = -incrx;
if (i1 == 2 || i1 == 3) incry = -incry;
ix1 = 1;
iy1 = 1;
if (incrx < 0) ix1 = nx;
if (incry < 0) iy1 = ny;
ix2 = nx - ix1 + 1;
iy2 = ny - iy1 + 1;
// F I N D V I S I B I L I T Y O F S I D E S
ivis[0] = 0;
ivis[1] = 0;
ivis[2] = 0;
ivis[3] = 0;
nv = 0;
view->FindNormal(0, 1, 0, zn);
if (zn < 0) ivis[0] = 1;
if (zn > 0) ivis[2] = 1;
view->FindNormal(sina, cosa, 0, zn);
if (zn > 0) ivis[1] = 1;
if (zn < 0) ivis[3] = 1;
// D R A W S T A C K O F L E G O - P L O T S
THistPainter *painter = (THistPainter*)gCurrentHist->GetPainter();
for (iy = iy1; incry < 0 ? iy >= iy2 : iy <= iy2; iy += incry) {
for (ix = ix1; incrx < 0 ? ix >= ix2 : ix <= ix2; ix += incrx) {
if (!painter->IsInside(ix,iy)) continue;
(this->*fLegoFunction)(ix, iy, nv, xy, v, tt);
if (nv < 2 || nv > vSize) continue;
if (Hoption.Zero) {
Double_t total_content=0;
for (iv = 1; iv < nv; ++iv) total_content += v[iv];
if (total_content==0) continue;
}
icodes[0] = ix;
icodes[1] = iy;
for (i = 1; i <= 4; ++i) {
xyz[i*3 - 3] = xy[2*i - 2] + xy[2*i - 1]*cosa;
xyz[i*3 - 2] = xy[2*i - 1]*sina;
xyz[(i + 4)*3 - 3] = xyz[i*3 - 3];
xyz[(i + 4)*3 - 2] = xyz[i*3 - 2];
}
// D R A W S T A C K
firstStackNumberDrawn = -1;
for (iv = 1; iv < nv; ++iv) {
for (i = 1; i <= 4; ++i) {
xyz[i*3 - 1] = v[iv - 1];
xyz[(i + 4)*3 - 1] = v[iv];
}
if (v[iv - 1] == v[iv]) continue;
icodes[2] = iv;
for (i = 1; i <= 4; ++i) {
if (ivis[i - 1] == 0) continue;
k1 = i;
k2 = i + 1;
if (i == 4) k2 = 1;
icodes[3] = k1;
iface[0] = k1;
iface[1] = k2;
iface[2] = k2 + 4;
iface[3] = k1 + 4;
tface[0] = tt[k1 + (iv << 2) - 5];
tface[1] = tt[k2 + (iv << 2) - 5];
tface[2] = tt[k2 + ((iv + 1) << 2) - 5];
tface[3] = tt[k1 + ((iv + 1) << 2) - 5];
fEdgeIdx = iv-1;
(this->*fDrawFace)(icodes, xyz, 4, iface, tface);
}
if ( firstStackNumberDrawn==-1 ) firstStackNumberDrawn = fEdgeIdx;
}
// D R A W B O T T O M F A C E
view->FindNormal(0, 0, 1, zn);
if (zn < 0) {
icodes[2] = 1;
icodes[3] = 5;
for (i = 1; i <= 4; ++i) {
xyz[i*3 - 1] = v[0];
iface[i - 1] = 5 - i;
tface[i - 1] = tt[5 - i - 1];
}
if (!Hoption.Zero) fEdgeIdx = 0;
else {
fEdgeIdx = firstStackNumberDrawn;
fColorBottom = fColorMain[fEdgeIdx];
}
(this->*fDrawFace)(icodes, xyz, 4, iface, tface);
}
// D R A W T O P F A C E
if (zn > 0) {
icodes[2] = nv - 1;
icodes[3] = 6;
for (i = 1; i <= 4; ++i) {
iface[i - 1] = i + 4;
tface[i - 1] = tt[i + (nv << 2) - 5];
}
Int_t cs = fColorTop;
if ( nv <= 3 ) fEdgeIdx = 0 ; // no stack or stack with only one histo
else {
if ( nv > 2 && (v[nv-1] == v[nv-2])) {
for (iv = nv-1; iv>2; iv--) {
if (v[nv-1] == v[iv-1]) {
fColorTop = fColorMain[iv-2];
fEdgeIdx = iv-2;
}
}
}
}
(this->*fDrawFace)(icodes, xyz, 4, iface, tface);
fColorTop = cs;
}
}
}
if (vSize > kVSizeMax) {
delete [] v;
delete [] tt;
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::LegoPolar(Int_t iordr, Int_t na, Int_t nb, const char *chopt)
{
// Draw stack of lego-plots in polar coordinates
//
// Input: IORDR - order of variables (0 - R,PHI; 1 - PHI,R)
// NA - number of steps along 1st variable
// NB - number of steps along 2nd variable
//
// FUN(IA,IB,NV,AB,V,TT) - external routine
// IA - cell number for 1st variable
// IB - cell number for 2nd variable
// NV - number of values for given cell
// AB(2,4) - coordinates of the cell corners
// V(NV) - cell values
// TT(4,*) - additional function
//
// DRFACE(ICODES,XYZ,NP,IFACE,T) - routine for face drawing
// ICODES(*) - set of codes for this face
// ICODES(1) - IA
// ICODES(2) - IB
// ICODES(3) - IV
// ICODES(4) - side: 1-internal,2-right,3-external,4-left
// 5-bottom, 6-top
// XYZ(3,*) - coordinates of nodes
// NP - number of nodes in face
// IFACE(NP) - face
// T(NP) - additional function
//
// CHOPT - options: 'BF' - from BACK to FRONT
// 'FB' - from FRONT to BACK
//
//Begin_Html
/*
*/
//End_Html
Int_t iphi, jphi, kphi, incr, nphi, ivis[6], iopt, iphi1, iphi2, iface[4], i, j;
Double_t tface[4];
Int_t incrr, k1, k2, ia, ib, ir1, ir2;
Double_t ab[8]; // was [2][4]
Int_t ir, jr, iv, nr, nv, icodes[4];
Double_t xyz[24]; // was [3][8]
ia = ib = 0;
TView *view = 0;
Int_t firstStackNumberDrawn=-1 ; // necessary to compute fColorBottom when the 0 option is set and when the stack is seen from below (bottomview, theta<0.)
if (gPad) view = gPad->GetView();
if (!view) {
Error("LegoPolar", "no TView in current pad");
return;
}
if (iordr == 0) {
jr = 1;
jphi = 2;
nr = na;
nphi = nb;
} else {
jr = 2;
jphi = 1;
nr = nb;
nphi = na;
}
if (nphi > 180) {
Error("LegoPolar", "too many PHI sectors (%d)", nphi);
return;
}
iopt = 2;
if (*chopt == 'B' || *chopt == 'b') iopt = 1;
// Allocate v and tt arrays
Double_t *v, *tt;
Int_t vSize = fNStack+2;
if (vSize > kVSizeMax) {
v = new Double_t[vSize];
tt = new Double_t[4*vSize];
} else {
vSize = kVSizeMax;
v = &gV[0];
tt = &gTT[0];
}
// P R E P A R E P H I A R R A Y
// F I N D C R I T I C A L S E C T O R S
nv = 0;
kphi = nphi;
if (iordr == 0) ia = nr;
if (iordr != 0) ib = nr;
for (i = 1; i <= nphi; ++i) {
if (iordr == 0) ib = i;
if (iordr != 0) ia = i;
(this->*fLegoFunction)(ia, ib, nv, ab, v, tt);
if (i == 1) fAphi[0] = ab[jphi - 1];
fAphi[i - 1] = (fAphi[i - 1] + ab[jphi - 1]) / (float)2.;
fAphi[i] = ab[jphi + 3];
}
view->FindPhiSectors(iopt, kphi, fAphi, iphi1, iphi2);
// E N C O D E V I S I B I L I T Y O F S I D E S
// A N D O R D E R A L O N G R
for (i = 1; i <= nphi; ++i) {
if (!iordr) ib = i;
if (iordr) ia = i;
(this->*fLegoFunction)(ia, ib, nv, ab, v, tt);
SideVisibilityEncode(iopt, ab[jphi - 1]*kRad, ab[jphi + 3]*kRad, fAphi[i - 1]);
}
// D R A W S T A C K O F L E G O - P L O T S
incr = 1;
iphi = iphi1;
L100:
if (iphi > nphi) goto L300;
// D E C O D E V I S I B I L I T Y O F S I D E S
SideVisibilityDecode(fAphi[iphi - 1], ivis[0], ivis[1], ivis[2], ivis[3], ivis[4], ivis[5], incrr);
ir1 = 1;
if (incrr < 0) ir1 = nr;
ir2 = nr - ir1 + 1;
// D R A W L E G O S F O R S E C T O R
for (ir = ir1; incrr < 0 ? ir >= ir2 : ir <= ir2; ir += incrr) {
if (iordr == 0) { ia = ir; ib = iphi; }
else { ia = iphi; ib = ir; }
(this->*fLegoFunction)(ia, ib, nv, ab, v, tt);
if (nv < 2 || nv > vSize) continue;
if (Hoption.Zero) {
Double_t total_content=0;
for (iv = 1; iv < nv; ++iv) total_content += v[iv];
if (total_content==0) continue;
}
icodes[0] = ia;
icodes[1] = ib;
for (i = 1; i <= 4; ++i) {
j = i;
if (iordr != 0 && i == 2) j = 4;
if (iordr != 0 && i == 4) j = 2;
xyz[j*3 - 3] = ab[jr + 2*i - 3]*TMath::Cos(ab[jphi + 2*i - 3]*kRad);
xyz[j*3 - 2] = ab[jr + 2*i - 3]*TMath::Sin(ab[jphi + 2*i - 3]*kRad);
xyz[(j + 4)*3 - 3] = xyz[j*3 - 3];
xyz[(j + 4)*3 - 2] = xyz[j*3 - 2];
}
// D R A W S T A C K
firstStackNumberDrawn = -1;
for (iv = 1; iv < nv; ++iv) {
for (i = 1; i <= 4; ++i) {
xyz[i*3 - 1] = v[iv - 1];
xyz[(i + 4)*3 - 1] = v[iv];
}
if (v[iv - 1] >= v[iv]) continue;
icodes[2] = iv;
for (i = 1; i <= 4; ++i) {
if (ivis[i - 1] == 0) continue;
k1 = i - 1;
if (i == 1) k1 = 4;
k2 = i;
if (xyz[k1*3 - 3] == xyz[k2*3 - 3] && xyz[k1*3 - 2] ==
xyz[k2*3 - 2]) continue;
iface[0] = k1;
iface[1] = k2;
iface[2] = k2 + 4;
iface[3] = k1 + 4;
tface[0] = tt[k1 + (iv << 2) - 5];
tface[1] = tt[k2 + (iv << 2) - 5];
tface[2] = tt[k2 + ((iv + 1) << 2) - 5];
tface[3] = tt[k1 + ((iv + 1) << 2) - 5];
icodes[3] = i;
fEdgeIdx = iv-1;
(this->*fDrawFace)(icodes, xyz, 4, iface, tface);
}
if ( firstStackNumberDrawn==-1 ) firstStackNumberDrawn = fEdgeIdx;
}
// D R A W B O T T O M F A C E
if (ivis[4] != 0) {
icodes[2] = 1;
icodes[3] = 5;
for (i = 1; i <= 4; ++i) {
xyz[i*3 - 1] = v[0];
iface[i - 1] = 5 - i;
tface[i - 1] = tt[5 - i - 1];
}
if (!Hoption.Zero) fEdgeIdx = 0;
else {
fEdgeIdx = firstStackNumberDrawn;
fColorBottom = fColorMain[fEdgeIdx];
}
(this->*fDrawFace)(icodes, xyz, 4, iface, tface);
}
// D R A W T O P F A C E
if (ivis[5] != 0) {
icodes[2] = nv - 1;
icodes[3] = 6;
for (i = 1; i <= 4; ++i) {
iface[i - 1] = i + 4;
tface[i - 1] = tt[i + (nv << 2) - 5];
}
Int_t cs = fColorTop;
if ( nv <= 3 ) fEdgeIdx = 0 ; // no stack or stack with only one histo
else {
if ( nv > 2 && (v[nv-1] == v[nv-2])) {
for (iv = nv-1; iv>2; iv--) {
if (v[nv-1] == v[iv-1]) {
fColorTop = fColorMain[iv-2];
fEdgeIdx = iv-2;
}
}
}
}
(this->*fDrawFace)(icodes, xyz, 4, iface, tface);
fColorTop = cs;
}
}
// N E X T P H I
L300:
iphi += incr;
if (iphi == 0) iphi = kphi;
if (iphi > kphi) iphi = 1;
if (iphi != iphi2) goto L100;
if (incr == 0) {
if (vSize > kVSizeMax) {
delete [] v;
delete [] tt;
}
return;
}
if (incr < 0) {
incr = 0;
goto L100;
}
incr = -1;
iphi = iphi1;
goto L300;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::LegoCylindrical(Int_t iordr, Int_t na, Int_t nb, const char *chopt)
{
// Draw stack of lego-plots in cylindrical coordinates
//
// Input: IORDR - order of variables (0 - Z,PHI; 1 - PHI,Z)
// NA - number of steps along 1st variable
// NPHI - number of steps along 2nd variable
//
// FUN(IA,IB,NV,AB,V,TT) - external routine
// IA - cell number for 1st variable
// IB - cell number for 2nd variable
// NV - number of values for given cell
// AB(2,4) - coordinates of the cell corners
// V(NV) - cell values
// TT(4,*) - additional function
//
// DRFACE(ICODES,XYZ,NP,IFACE,T) - routine for face drawing
// ICODES(*) - set of codes for this face
// ICODES(1) - IA
// ICODES(2) - IB
// ICODES(3) - IV
// ICODES(4) - side: 1,2,3,4 - ordinary sides
// 5-bottom,6-top
// XYZ(3,*) - coordinates of nodes
// NP - number of nodes in face
// IFACE(NP) - face
// T(NP) - additional function
//
// CHOPT - options: 'BF' - from BACK to FRONT
// 'FB' - from FRONT to BACK
//
//Begin_Html
/*
*/
//End_Html
Int_t iphi, jphi, kphi, incr, nphi, ivis[6], iopt, iphi1, iphi2, iface[4], i, j;
Double_t tface[4], z;
Double_t ab[8]; // was [2][4]
Int_t ia, ib, idummy, iz1, iz2, nz, incrz, k1, k2, nv;
Int_t iv, iz, jz, icodes[4];
Double_t cosphi[4];
Double_t sinphi[4];
Double_t xyz[24]; // was [3][8]
ia = ib = 0;
TView *view = 0;
Int_t firstStackNumberDrawn=-1 ; // necessary to compute fColorBottom when the 0 option is set and when the stack is seen from below (bottomview, theta<0.)
if (gPad) view = gPad->GetView();
if (!view) {
Error("LegoCylindrical", "no TView in current pad");
return;
}
if (iordr == 0) {
jz = 1;
jphi = 2;
nz = na;
nphi = nb;
} else {
jz = 2;
jphi = 1;
nz = nb;
nphi = na;
}
if (nphi > 180) {
Error("LegoCylindrical", "too many PHI sectors (%d)", nphi);
return;
}
iopt = 2;
if (*chopt == 'B' || *chopt == 'b') iopt = 1;
// Allocate v and tt arrays
Double_t *v, *tt;
Int_t vSize = fNStack+2;
if (vSize > kVSizeMax) {
v = new Double_t[vSize];
tt = new Double_t[4*vSize];
} else {
vSize = kVSizeMax;
v = &gV[0];
tt = &gTT[0];
}
// P R E P A R E P H I A R R A Y
// F I N D C R I T I C A L S E C T O R S
nv = 0;
kphi = nphi;
if (iordr == 0) ia = nz;
if (iordr != 0) ib = nz;
for (i = 1; i <= nphi; ++i) {
if (iordr == 0) ib = i;
if (iordr != 0) ia = i;
(this->*fLegoFunction)(ia, ib, nv, ab, v, tt);
if (i == 1) fAphi[0] = ab[jphi - 1];
fAphi[i - 1] = (fAphi[i - 1] + ab[jphi - 1]) / (float)2.;
fAphi[i] = ab[jphi + 3];
}
view->FindPhiSectors(iopt, kphi, fAphi, iphi1, iphi2);
// E N C O D E V I S I B I L I T Y O F S I D E S
// A N D O R D E R A L O N G R
for (i = 1; i <= nphi; ++i) {
if (iordr == 0) ib = i;
if (iordr != 0) ia = i;
(this->*fLegoFunction)(ia, ib, nv, ab, v, tt);
SideVisibilityEncode(iopt, ab[jphi - 1]*kRad, ab[jphi + 3]*kRad, fAphi[i - 1]);
}
// F I N D O R D E R A L O N G Z
incrz = 1;
iz1 = 1;
view->FindNormal(0, 0, 1, z);
if ((z <= 0 && iopt == 1) || (z > 0 && iopt == 2)) {
incrz = -1;
iz1 = nz;
}
iz2 = nz - iz1 + 1;
// D R A W S T A C K O F L E G O - P L O T S
incr = 1;
iphi = iphi1;
L100:
if (iphi > nphi) goto L400;
// D E C O D E V I S I B I L I T Y O F S I D E S
idummy = 0;
SideVisibilityDecode(fAphi[iphi - 1], ivis[4], ivis[1], ivis[5], ivis[3], ivis[0], ivis[2], idummy);
for (iz = iz1; incrz < 0 ? iz >= iz2 : iz <= iz2; iz += incrz) {
if (iordr == 0) {ia = iz; ib = iphi;}
else {ia = iphi; ib = iz;}
(this->*fLegoFunction)(ia, ib, nv, ab, v, tt);
if (nv < 2 || nv > vSize) continue;
icodes[0] = ia;
icodes[1] = ib;
for (i = 1; i <= 4; ++i) {
j = i;
if (iordr != 0 && i == 2) j = 4;
if (iordr != 0 && i == 4) j = 2;
cosphi[j - 1] = TMath::Cos(ab[jphi + 2*i - 3]*kRad);
sinphi[j - 1] = TMath::Sin(ab[jphi + 2*i - 3]*kRad);
xyz[j*3 - 1] = ab[jz + 2*i - 3];
xyz[(j + 4)*3 - 1] = ab[jz + 2*i - 3];
}
// D R A W S T A C K
firstStackNumberDrawn = -1;
for (iv = 1; iv < nv; ++iv) {
for (i = 1; i <= 4; ++i) {
xyz[i*3 - 3] = v[iv - 1]*cosphi[i - 1];
xyz[i*3 - 2] = v[iv - 1]*sinphi[i - 1];
xyz[(i + 4)*3 - 3] = v[iv]*cosphi[i - 1];
xyz[(i + 4)*3 - 2] = v[iv]*sinphi[i - 1];
}
if (v[iv - 1] >= v[iv]) continue;
icodes[2] = iv;
for (i = 1; i <= 4; ++i) {
if (ivis[i - 1] == 0) continue;
k1 = i;
k2 = i - 1;
if (i == 1) k2 = 4;
iface[0] = k1;
iface[1] = k2;
iface[2] = k2 + 4;
iface[3] = k1 + 4;
tface[0] = tt[k1 + (iv << 2) - 5];
tface[1] = tt[k2 + (iv << 2) - 5];
tface[2] = tt[k2 + ((iv + 1) << 2) - 5];
tface[3] = tt[k1 + ((iv + 1) << 2) - 5];
icodes[3] = i;
fEdgeIdx = iv-1;
(this->*fDrawFace)(icodes, xyz, 4, iface, tface);
}
if ( firstStackNumberDrawn==-1 ) firstStackNumberDrawn = fEdgeIdx;
}
// D R A W B O T T O M F A C E
if (ivis[4] != 0 && v[0] > 0) {
icodes[2] = 1;
icodes[3] = 5;
for (i = 1; i <= 4; ++i) {
xyz[i*3 - 3] = v[0]*cosphi[i - 1];
xyz[i*3 - 2] = v[0]*sinphi[i - 1];
iface[i - 1] = i;
tface[i - 1] = tt[i - 1];
}
if (!Hoption.Zero) fEdgeIdx = 0;
else {
fEdgeIdx = firstStackNumberDrawn;
fColorBottom = fColorMain[fEdgeIdx];
}
(this->*fDrawFace)(icodes, xyz, 4, iface, tface);
}
// D R A W T O P F A C E
if (ivis[5] != 0 && v[nv - 1] > 0) {
icodes[2] = nv - 1;
icodes[3] = 6;
for (i = 1; i <= 4; ++i) {
iface[i - 1] = 5 - i + 4;
tface[i - 1] = tt[5 - i + (nv << 2) - 5];
}
Int_t cs = fColorTop;
if ( nv <= 3 ) fEdgeIdx = 0 ; // no stack or stack with only one histo
else {
if ( nv > 2 && (v[nv-1] == v[nv-2])) {
for (iv = nv-1; iv>2; iv--) {
if (v[nv-1] == v[iv-1]) {
fColorTop = fColorMain[iv-2];
fEdgeIdx = iv-2;
}
}
}
}
(this->*fDrawFace)(icodes, xyz, 4, iface, tface);
fColorTop = cs;
}
}
// N E X T P H I
L400:
iphi += incr;
if (iphi == 0) iphi = kphi;
if (iphi > kphi) iphi = 1;
if (iphi != iphi2) goto L100;
if (incr == 0) {
if (vSize > kVSizeMax) {
delete [] v;
delete [] tt;
}
return;
}
if (incr < 0) {
incr = 0;
goto L100;
}
incr = -1;
iphi = iphi1;
goto L400;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::LegoSpherical(Int_t ipsdr, Int_t iordr, Int_t na, Int_t nb, const char *chopt)
{
// Draw stack of lego-plots spheric coordinates
//
// Input: IPSDR - pseudo-rapidity flag
// IORDR - order of variables (0 - THETA,PHI; 1 - PHI,THETA)
// NA - number of steps along 1st variable
// NB - number of steps along 2nd variable
//
// FUN(IA,IB,NV,AB,V,TT) - external routine
// IA - cell number for 1st variable
// IB - cell number for 2nd variable
// NV - number of values for given cell
// AB(2,4) - coordinates of the cell corners
// V(NV) - cell values
// TT(4,*) - additional function
//
// DRFACE(ICODES,XYZ,NP,IFACE,T) - routine for face drawing
// ICODES(*) - set of codes for this face
// ICODES(1) - IA
// ICODES(2) - IB
// ICODES(3) - IV
// ICODES(4) - side: 1,2,3,4 - ordinary sides
// 5-bottom,6-top
// XYZ(3,*) - coordinates of nodes
// NP - number of nodes in face
// IFACE(NP) - face
// T(NP) - additional function
//
// CHOPT - options: 'BF' - from BACK to FRONT
// 'FB' - from FRONT to BACK
Int_t iphi, jphi, kphi, incr, nphi, ivis[6], iopt, iphi1, iphi2, iface[4], i, j;
Double_t tface[4], costh[4];
Double_t sinth[4];
Int_t k1, k2, ia, ib, incrth, ith, jth, kth, nth, mth, ith1, ith2, nv;
Double_t ab[8]; // was [2][4]
Double_t th;
Int_t iv, icodes[4];
Double_t zn, cosphi[4];
Double_t sinphi[4], th1, th2, phi;
Double_t xyz[24]; // was [3][8]
Double_t phi1, phi2;
ia = ib = 0;
TView *view = 0;
Int_t firstStackNumberDrawn=-1 ; // necessary to compute fColorBottom when the 0 option is set and when the stack is seen from below (bottomview, theta<0.)
if (gPad) view = gPad->GetView();
if (!view) {
Error("LegoSpherical", "no TView in current pad");
return;
}
if (iordr == 0) {
jth = 1;
jphi = 2;
nth = na;
nphi = nb;
} else {
jth = 2;
jphi = 1;
nth = nb;
nphi = na;
}
if (nth > 180) {
Error("LegoSpherical", "too many THETA sectors (%d)", nth);
return;
}
if (nphi > 180) {
Error("LegoSpherical", "too many PHI sectors (%d)", nphi);
return;
}
iopt = 2;
if (*chopt == 'B' || *chopt == 'b') iopt = 1;
// Allocate v and tt arrays
Double_t *v, *tt;
Int_t vSize = fNStack+2;
if (vSize > kVSizeMax) {
v = new Double_t[vSize];
tt = new Double_t[4*vSize];
} else {
vSize = kVSizeMax;
v = &gV[0];
tt = &gTT[0];
}
// P R E P A R E P H I A R R A Y
// F I N D C R I T I C A L P H I S E C T O R S
nv = 0;
kphi = nphi;
mth = nth / 2;
if (mth == 0) mth = 1;
if (iordr == 0) ia = mth;
if (iordr != 0) ib = mth;
for (i = 1; i <= nphi; ++i) {
if (iordr == 0) ib = i;
if (iordr != 0) ia = i;
(this->*fLegoFunction)(ia, ib, nv, ab, v, tt);
if (i == 1) fAphi[0] = ab[jphi - 1];
fAphi[i - 1] = (fAphi[i - 1] + ab[jphi - 1]) / (float)2.;
fAphi[i] = ab[jphi + 3];
}
view->FindPhiSectors(iopt, kphi, fAphi, iphi1, iphi2);
// P R E P A R E T H E T A A R R A Y
if (iordr == 0) ib = 1;
if (iordr != 0) ia = 1;
for (i = 1; i <= nth; ++i) {
if (iordr == 0) ia = i;
if (iordr != 0) ib = i;
(this->*fLegoFunction)(ia, ib, nv, ab, v, tt);
if (i == 1) fAphi[0] = ab[jth - 1];
fAphi[i - 1] = (fAphi[i - 1] + ab[jth - 1]) / (float)2.;
fAphi[i] = ab[jth + 3];
}
// D R A W S T A C K O F L E G O - P L O T S
kth = nth;
incr = 1;
iphi = iphi1;
L100:
if (iphi > nphi) goto L500;
// F I N D C R I T I C A L T H E T A S E C T O R S
if (!iordr) {ia = mth; ib = iphi; }
else {ia = iphi;ib = mth; }
(this->*fLegoFunction)(ia, ib, nv, ab, v, tt);
phi = (ab[jphi - 1] + ab[jphi + 3]) / (float)2.;
view->FindThetaSectors(iopt, phi, kth, fAphi, ith1, ith2);
incrth = 1;
ith = ith1;
L200:
if (ith > nth) goto L400;
if (iordr == 0) ia = ith;
if (iordr != 0) ib = ith;
(this->*fLegoFunction)(ia, ib, nv, ab, v, tt);
if (nv < 2 || nv > vSize) goto L400;
// D E F I N E V I S I B I L I T Y O F S I D E S
for (i = 1; i <= 6; ++i) ivis[i - 1] = 0;
phi1 = kRad*ab[jphi - 1];
phi2 = kRad*ab[jphi + 3];
th1 = kRad*ab[jth - 1];
th2 = kRad*ab[jth + 3];
view->FindNormal(TMath::Sin(phi1), -TMath::Cos(phi1), 0, zn);
if (zn > 0) ivis[1] = 1;
view->FindNormal(-TMath::Sin(phi2), TMath::Cos(phi2), 0, zn);
if (zn > 0) ivis[3] = 1;
phi = (phi1 + phi2) / (float)2.;
view->FindNormal(-TMath::Cos(phi)*TMath::Cos(th1), -TMath::Sin(phi)*TMath::Cos(th1), TMath::Sin(th1), zn);
if (zn > 0) ivis[0] = 1;
view->FindNormal(TMath::Cos(phi)*TMath::Cos(th2), TMath::Sin(phi)*TMath::Cos(th2), -TMath::Sin(th2), zn);
if (zn > 0) ivis[2] = 1;
th = (th1 + th2) / (float)2.;
if (ipsdr == 1) th = kRad*90;
view->FindNormal(TMath::Cos(phi)*TMath::Sin(th), TMath::Sin(phi)*TMath::Sin(th), TMath::Cos(th), zn);
if (zn < 0) ivis[4] = 1;
if (zn > 0) ivis[5] = 1;
// D R A W S T A C K
icodes[0] = ia;
icodes[1] = ib;
for (i = 1; i <= 4; ++i) {
j = i;
if (iordr != 0 && i == 2) j = 4;
if (iordr != 0 && i == 4) j = 2;
costh[j - 1] = TMath::Cos(kRad*ab[jth + 2*i - 3]);
sinth[j - 1] = TMath::Sin(kRad*ab[jth + 2*i - 3]);
cosphi[j - 1] = TMath::Cos(kRad*ab[jphi + 2*i - 3]);
sinphi[j - 1] = TMath::Sin(kRad*ab[jphi + 2*i - 3]);
}
firstStackNumberDrawn = -1;
for (iv = 1; iv < nv; ++iv) {
if (ipsdr == 1) {
for (i = 1; i <= 4; ++i) {
xyz[i*3 - 3] = v[iv - 1]*cosphi[i - 1];
xyz[i*3 - 2] = v[iv - 1]*sinphi[i - 1];
xyz[i*3 - 1] = v[iv - 1]*costh[i - 1] / sinth[i - 1];
xyz[(i + 4)*3 - 3] = v[iv]*cosphi[i - 1];
xyz[(i + 4)*3 - 2] = v[iv]*sinphi[i - 1];
xyz[(i + 4)*3 - 1] = v[iv]*costh[i - 1] / sinth[i - 1];
}
} else {
for (i = 1; i <= 4; ++i) {
xyz[i*3 - 3] = v[iv - 1]*sinth[i - 1]*cosphi[i - 1];
xyz[i*3 - 2] = v[iv - 1]*sinth[i - 1]*sinphi[i - 1];
xyz[i*3 - 1] = v[iv - 1]*costh[i - 1];
xyz[(i + 4)*3 - 3] = v[iv]*sinth[i - 1]*cosphi[i - 1];
xyz[(i + 4)*3 - 2] = v[iv]*sinth[i - 1]*sinphi[i - 1];
xyz[(i + 4)*3 - 1] = v[iv]*costh[i - 1];
}
}
if (v[iv - 1] >= v[iv]) continue;
icodes[2] = iv;
for (i = 1; i <= 4; ++i) {
if (ivis[i - 1] == 0) continue;
k1 = i - 1;
if (i == 1) k1 = 4;
k2 = i;
iface[0] = k1;
iface[1] = k2;
iface[2] = k2 + 4;
iface[3] = k1 + 4;
tface[0] = tt[k1 + (iv << 2) - 5];
tface[1] = tt[k2 + (iv << 2) - 5];
tface[2] = tt[k2 + ((iv + 1) << 2) - 5];
tface[3] = tt[k1 + ((iv + 1) << 2) - 5];
icodes[3] = i;
fEdgeIdx = iv-1;
(this->*fDrawFace)(icodes, xyz, 4, iface, tface);
}
if ( firstStackNumberDrawn==-1 ) firstStackNumberDrawn = fEdgeIdx;
}
// D R A W B O T T O M F A C E
if (ivis[4] != 0 && v[0] > 0) {
icodes[2] = 1;
icodes[3] = 5;
for (i = 1; i <= 4; ++i) {
if (ipsdr == 1) {
xyz[i*3 - 3] = v[0]*cosphi[i - 1];
xyz[i*3 - 2] = v[0]*sinphi[i - 1];
xyz[i*3 - 1] = v[0]*costh[i - 1] / sinth[i - 1];
} else {
xyz[i*3 - 3] = v[0]*sinth[i - 1]*cosphi[i - 1];
xyz[i*3 - 2] = v[0]*sinth[i - 1]*sinphi[i - 1];
xyz[i*3 - 1] = v[0]*costh[i - 1];
}
iface[i - 1] = 5 - i;
tface[i - 1] = tt[5 - i - 1];
}
if (!Hoption.Zero) fEdgeIdx = 0;
else {
fEdgeIdx = firstStackNumberDrawn;
fColorBottom = fColorMain[fEdgeIdx];
}
(this->*fDrawFace)(icodes, xyz, 4, iface, tface);
}
// D R A W T O P F A C E
if (ivis[5] != 0 && v[nv - 1] > 0) {
icodes[2] = nv - 1;
icodes[3] = 6;
for (i = 1; i <= 4; ++i) {
iface[i - 1] = i + 4;
tface[i - 1] = tt[i + 4 + 2*nv - 5];
}
Int_t cs = fColorTop;
if ( nv <= 3 ) fEdgeIdx = 0 ; // no stack or stack with only one histo
else {
if ( nv > 2 && (v[nv-1] == v[nv-2])) {
for (iv = nv-1; iv>2; iv--) {
if (v[nv-1] == v[iv-1]) {
fColorTop = fColorMain[iv-2];
fEdgeIdx = iv-2;
}
}
}
}
(this->*fDrawFace)(icodes, xyz, 4, iface, tface);
fColorTop = cs;
}
// N E X T T H E T A
L400:
ith += incrth;
if (ith == 0) ith = kth;
if (ith > kth) ith = 1;
if (ith != ith2) goto L200;
if (incrth == 0) goto L500;
if (incrth < 0) {
incrth = 0;
goto L200;
}
incrth = -1;
ith = ith1;
goto L400;
// N E X T P H I
L500:
iphi += incr;
if (iphi == 0) iphi = kphi;
if (iphi > kphi) iphi = 1;
if (iphi != iphi2) goto L100;
if (incr == 0) {
if (vSize > kVSizeMax) {
delete [] v;
delete [] tt;
}
return;
}
if (incr < 0) {
incr = 0;
goto L100;
}
incr = -1;
iphi = iphi1;
goto L500;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::LightSource(Int_t nl, Double_t yl, Double_t xscr,
Double_t yscr, Double_t zscr, Int_t &irep)
{
// Set light source
//
// Input: NL - source number: -1 off all light sources
// 0 set diffused light
// YL - intensity of the light source
// XSCR |
// YSCR > direction of the light (in respect of the screen)
// ZSCR |
//
// Output: IREP - reply : 0 - O.K.
// -1 - error in light sources definition:
// negative intensity
// source number greater than max
// light source is placed at origin
/* Local variables */
Int_t i;
Double_t s;
irep = 0;
if (nl < 0) goto L100;
else if (nl == 0) goto L200;
else goto L300;
// S W I T C H O F F L I G H T S
L100:
fLoff = 1;
fYdl = 0;
for (i = 1; i <= 4; ++i) {
fYls[i - 1] = 0;
}
return;
// S E T D I F F U S E D L I G H T
L200:
if (yl < 0) {
Error("LightSource", "negative light intensity");
irep = -1;
return;
}
fYdl = yl;
goto L400;
// S E T L I G H T S O U R C E
L300:
if (nl > 4 || yl < 0) {
Error("LightSource", "illegal light source number (nl=%d, yl=%f)", nl, yl);
irep = -1;
return;
}
s = TMath::Sqrt(xscr*xscr + yscr*yscr + zscr*zscr);
if (s == 0) {
Error("LightSource", "light source is placed at origin");
irep = -1;
return;
}
fYls[nl - 1] = yl;
fVls[nl*3 - 3] = xscr / s;
fVls[nl*3 - 2] = yscr / s;
fVls[nl*3 - 1] = zscr / s;
// C H E C K L I G H T S
L400:
fLoff = 0;
if (fYdl != 0) return;
for (i = 1; i <= 4; ++i) {
if (fYls[i - 1] != 0) return;
}
fLoff = 1;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::Luminosity(Double_t *anorm, Double_t &flum)
{
// Find surface luminosity at given point
// --
// Lightness model formula: Y = YD*QA + > YLi*(QD*cosNi+QS*cosRi)
// --
//
// B1 = VN(3)*VL(2) - VN(2)*VL(3)
// B2 = VN(1)*VL(3) - VN(3)*VL(1)
// B3 = VN(2)*VL(1) - VN(1)*VL(2)
// B4 = VN(1)*VL(1) + VN(2)*VL(2) + VN(3)*VL(3)
// VR(1) = VN(3)*B2 - VN(2)*B3 + VN(1)*B4
// VR(2) =-VN(3)*B1 + VN(1)*B3 + VN(2)*B4
// VR(3) = VN(2)*B1 - VN(1)*B2 + VN(3)*B4
// S = SQRT(VR(1)*VR(1)+VR(2)*VR(2)+VR(3)*VR(3))
// VR(1) = VR(1)/S
// VR(2) = VR(2)/S
// VR(3) = VR(3)/S
// COSR = VR(1)*0. + VR(2)*0. + VR(3)*1.
//
// References: WCtoNDC
//
// Input: ANORM(3) - surface normal at given point
//
// Output: FLUM - luminosity
/* Local variables */
Double_t cosn, cosr;
Int_t i;
Double_t s, vl[3], vn[3];
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) return;
/* Parameter adjustments */
--anorm;
flum = 0;
if (fLoff != 0) return;
// T R A N S F E R N O R M A L T O SCREEN COORDINATES
view->NormalWCtoNDC(&anorm[1], vn);
s = TMath::Sqrt(vn[0]*vn[0] + vn[1]*vn[1] + vn[2]*vn[2]);
if (vn[2] < 0) s = -(Double_t)s;
vn[0] /= s;
vn[1] /= s;
vn[2] /= s;
// F I N D L U M I N O S I T Y
flum = fYdl*fQA;
for (i = 1; i <= 4; ++i) {
if (fYls[i - 1] <= 0) continue;
vl[0] = fVls[i*3 - 3];
vl[1] = fVls[i*3 - 2];
vl[2] = fVls[i*3 - 1];
cosn = vl[0]*vn[0] + vl[1]*vn[1] + vl[2]*vn[2];
if (cosn < 0) continue;
cosr = vn[1]*(vn[2]*vl[1] - vn[1]*vl[2]) - vn[0]*(vn[0]*vl[2]
- vn[2]*vl[0]) + vn[2]*cosn;
if (cosr <= 0) cosr = 0;
flum += fYls[i - 1]*(fQD*cosn + fQS*TMath::Power(cosr, fNqs));
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::ModifyScreen(Double_t *r1, Double_t *r2)
{
// Modify SCREEN
//
// Input: R1(3) - 1-st point of the line
// R2(3) - 2-nd point of the line
/* Local variables */
Int_t i, i1, i2;
Double_t x1, x2, y1, y2, dy, ww, yy1, yy2, *tn;
/* Parameter adjustments */
--r2;
--r1;
TView *view = 0;
if (gPad) view = gPad->GetView();
if (view) {
tn = view->GetTN();
if (tn) {
x1 = tn[0]*r1[1] + tn[1]*r1[2] + tn[2]*r1[3] + tn[3];
x2 = tn[0]*r2[1] + tn[1]*r2[2] + tn[2]*r2[3] + tn[3];
y1 = tn[4]*r1[1] + tn[5]*r1[2] + tn[6]*r1[3] + tn[7];
y2 = tn[4]*r2[1] + tn[5]*r2[2] + tn[6]*r2[3] + tn[7];
} else {
Error("ModifyScreen", "invalid TView in current pad");
return;
}
} else {
Error("ModifyScreen", "no TView in current pad");
return;
}
if (x1 >= x2) {
ww = x1;
x1 = x2;
x2 = ww;
ww = y1;
y1 = y2;
y2 = ww;
}
i1 = Int_t((x1 - fX0) / fDX) + 15;
i2 = Int_t((x2 - fX0) / fDX) + 15;
if (i1 == i2) return;
// M O D I F Y B O U N D A R I E S OF THE SCREEN
dy = (y2 - y1) / (i2 - i1);
for (i = i1; i <= i2 - 1; ++i) {
yy1 = y1 + dy*(i - i1);
yy2 = yy1 + dy;
if (fD[2*i - 2] > yy1) fD[2*i - 2] = yy1;
if (fD[2*i - 1] > yy2) fD[2*i - 1] = yy2;
if (fU[2*i - 2] < yy1) fU[2*i - 2] = yy1;
if (fU[2*i - 1] < yy2) fU[2*i - 1] = yy2;
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SetDrawFace(DrawFaceFunc_t drface)
{
// Store pointer to current algorithm to draw faces
fDrawFace = drface;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SetLegoFunction(LegoFunc_t fun)
{
// Store pointer to current lego function
fLegoFunction = fun;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SetSurfaceFunction(SurfaceFunc_t fun)
{
// Store pointer to current surface function
fSurfaceFunction = fun;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SetF3(TF3 *f3)
{
// Static function
// Store pointer to current implicit function
fgCurrentF3 = f3;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SetF3ClippingBoxOff()
{
// static function
// Set the implicit function clipping box "off".
fgF3Clipping = 0;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SetF3ClippingBoxOn(Double_t xclip,
Double_t yclip, Double_t zclip)
{
// static function
// Set the implicit function clipping box "on" and define the clipping box.
// xclip, yclip and zclip is a point within the function range. All the
// function value having x<=xclip and y<=yclip and z>=zclip are clipped.
fgF3Clipping = 1;
fgF3XClip = xclip;
fgF3YClip = yclip;
fgF3ZClip = zclip;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SetColorDark(Color_t color, Int_t n)
{
// Store dark color for stack number n
if (n < 0 ) {fColorBottom = color; return;}
if (n > fNStack ) {fColorTop = color; return;}
fColorDark[n] = color;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SetColorMain(Color_t color, Int_t n)
{
// Store color for stack number n
if (n < 0 ) {fColorBottom = color; return;}
if (n > fNStack ) {fColorTop = color; return;}
fColorMain[n] = color;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SetEdgeAtt(Color_t color, Style_t style, Width_t width, Int_t n)
{
// Store edge attributes
fEdgeColor[n] = color;
fEdgeStyle[n] = style;
fEdgeWidth[n] = width;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SideVisibilityDecode(Double_t val, Int_t &iv1, Int_t &iv2, Int_t &iv3, Int_t &iv4, Int_t &iv5, Int_t &iv6, Int_t &ir)
{
// Decode side visibilities and order along R for sector
//
// Input: VAL - encoded value
//
// Output: IV1 ... IV6 - visibility of the sides
// IR - increment along R
Int_t ivis[6], i, k, num;
k = Int_t(val);
num = 128;
for (i = 1; i <= 6; ++i) {
ivis[i - 1] = 0;
num /= 2;
if (k < num) continue;
k -= num;
ivis[i - 1] = 1;
}
ir = 1;
if (k == 1) ir = -1;
iv1 = ivis[5];
iv2 = ivis[4];
iv3 = ivis[3];
iv4 = ivis[2];
iv5 = ivis[1];
iv6 = ivis[0];
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SideVisibilityEncode(Int_t iopt, Double_t phi1, Double_t phi2, Double_t &val)
{
// Encode side visibilities and order along R for sector
//
// Input: IOPT - options: 1 - from BACK to FRONT 'BF'
// 2 - from FRONT to BACK 'FB'
// PHI1 - 1st phi of sector
// PHI2 - 2nd phi of sector
//
// Output: VAL - encoded value
/* Local variables */
Double_t zn, phi;
Int_t k = 0;
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) {
Error("SideVisibilityEncode", "no TView in current pad");
return;
}
view->FindNormal(0, 0, 1, zn);
if (zn > 0) k += 64;
if (zn < 0) k += 32;
view->FindNormal(-TMath::Sin(phi2), TMath::Cos(phi2), 0, zn);
if (zn > 0) k += 16;
view->FindNormal(TMath::Sin(phi1), -TMath::Cos(phi1), 0, zn);
if (zn > 0) k += 4;
phi = (phi1 + phi2) / (float)2.;
view->FindNormal(TMath::Cos(phi), TMath::Sin(phi), 0, zn);
if (zn > 0) k += 8;
if (zn < 0) k += 2;
if ((zn <= 0 && iopt == 1) || (zn > 0 && iopt == 2)) ++k;
val = Double_t(k);
}
//______________________________________________________________________________
void TPainter3dAlgorithms::Spectrum(Int_t nl, Double_t fmin, Double_t fmax, Int_t ic, Int_t idc, Int_t &irep)
{
// Set Spectrum
//
// Input: NL - number of levels
// FMIN - MIN function value
// FMAX - MAX function value
// IC - initial color index (for 1st level)
// IDC - color index increment
//
// Output: IREP - reply: 0 O.K.
// -1 error in parameters
// F_max less than F_min
// illegal number of levels
// initial color index is negative
// color index increment must be positive
static const char *where = "Spectrum";
/* Local variables */
Double_t delf;
Int_t i;
irep = 0;
if (nl == 0) {fNlevel = 0; return; }
// C H E C K P A R A M E T E R S
if (fmax <= fmin) {
Error(where, "fmax (%f) less than fmin (%f)", fmax, fmin);
irep = -1;
return;
}
if (nl < 0 || nl > 256) {
Error(where, "illegal number of levels (%d)", nl);
irep = -1;
return;
}
if (ic < 0) {
Error(where, "initial color index is negative");
irep = -1;
return;
}
if (idc < 0) {
Error(where, "color index increment must be positive");
irep = -1;
}
// S E T S P E C T R
const Int_t kMAXCOL = 50;
delf = (fmax - fmin) / nl;
fNlevel = -(nl + 1);
for (i = 1; i <= nl+1; ++i) {
fFunLevel[i - 1] = fmin + (i - 1)*delf;
fColorLevel[i] = ic + (i - 1)*idc;
if (ic <= kMAXCOL && fColorLevel[i] > kMAXCOL) fColorLevel[i] -= kMAXCOL;
}
fColorLevel[0] = fColorLevel[1];
fColorLevel[nl + 1] = fColorLevel[nl];
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SurfaceCartesian(Double_t ang, Int_t nx, Int_t ny, const char *chopt)
{
// Draw surface in cartesian coordinate system
//
// Input: ANG - angle between X ang Y
// NX - number of steps along X
// NY - number of steps along Y
//
// FUN(IX,IY,F,T) - external routine
// IX - X number of the cell
// IY - Y number of the cell
// F(3,4) - face which corresponds to the cell
// T(4) - additional function (for example: temperature)
//
// DRFACE(ICODES,XYZ,NP,IFACE,T) - routine for face drawing
// ICODES(*) - set of codes for this face
// ICODES(1) - IX
// ICODES(2) - IY
// NP - number of nodes in face
// IFACE(NP) - face
// T(NP) - additional function
//
// CHOPT - options: 'BF' - from BACK to FRONT
// 'FB' - from FRONT to BACK
/* Initialized data */
Int_t iface[4] = { 1,2,3,4 };
/* Local variables */
Double_t cosa, sina, f[12] /* was [3][4] */;
Int_t i, incrx, incry, i1, ix, iy;
Double_t tt[4];
Int_t icodes[3], ix1, iy1, ix2, iy2; // was icode[2]. One element more to differentiate front & back boxes from data
Double_t xyz[12] /* was [3][4] */;
Double_t *tn;
sina = TMath::Sin(ang*kRad);
cosa = TMath::Cos(ang*kRad);
// F I N D T H E M O S T L E F T P O I N T
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) {
Error("SurfaceCartesian", "no TView in current pad");
return;
}
tn = view->GetTN();
i1 = 1;
if (tn) {
if (tn[0] < 0) i1 = 2;
if (tn[0]*cosa + tn[1]*sina < 0) i1 = 5 - i1;
}
// D E F I N E O R D E R O F D R A W I N G
if (*chopt == 'B' || *chopt == 'b') {incrx = -1; incry = -1;}
else {incrx = 1; incry = 1;}
if (i1 == 1 || i1 == 2) incrx = -incrx;
if (i1 == 2 || i1 == 3) incry = -incry;
ix1 = 1;
iy1 = 1;
if (incrx < 0) ix1 = nx;
if (incry < 0) iy1 = ny;
ix2 = nx - ix1 + 1;
iy2 = ny - iy1 + 1;
// D R A W S U R F A C E
icodes[2] = -1; // -1 for data, 0 for front a back boxes
fEdgeIdx = 0; // constant since stacks are not (yet?) handled for surfaces
THistPainter *painter = (THistPainter*)gCurrentHist->GetPainter();
for (iy = iy1; incry < 0 ? iy >= iy2 : iy <= iy2; iy += incry) {
for (ix = ix1; incrx < 0 ? ix >= ix2 : ix <= ix2; ix += incrx) {
if (!painter->IsInside(ix,iy)) continue;
(this->*fSurfaceFunction)(ix, iy, f, tt);
for (i = 1; i <= 4; ++i) {
xyz[i*3 - 3] = f[i*3 - 3] + f[i*3 - 2]*cosa;
xyz[i*3 - 2] = f[i*3 - 2]*sina;
xyz[i*3 - 1] = f[i*3 - 1];
// added EJB -->
Double_t al, ab;
if (Hoption.Proj == 1 ) {
THistPainter::ProjectAitoff2xy(xyz[i*3 - 3], xyz[i*3 - 2], al, ab);
xyz[i*3 - 3] = al;
xyz[i*3 - 2] = ab;
} else if (Hoption.Proj == 2 ) {
THistPainter::ProjectMercator2xy(xyz[i*3 - 3], xyz[i*3 - 2], al, ab);
xyz[i*3 - 3] = al;
xyz[i*3 - 2] = ab;
} else if (Hoption.Proj == 3) {
THistPainter::ProjectSinusoidal2xy(xyz[i*3 - 3], xyz[i*3 - 2], al, ab);
xyz[i*3 - 3] = al;
xyz[i*3 - 2] = ab;
} else if (Hoption.Proj == 4) {
THistPainter::ProjectParabolic2xy(xyz[i*3 - 3], xyz[i*3 - 2], al, ab);
xyz[i*3 - 3] = al;
xyz[i*3 - 2] = ab;
}
}
icodes[0] = ix;
icodes[1] = iy;
(this->*fDrawFace)(icodes, xyz, 4, iface, tt);
}
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SurfaceFunction(Int_t ia, Int_t ib, Double_t *f, Double_t *t)
{
// Service function for Surfaces
static Int_t ixadd[4] = { 0,1,1,0 };
static Int_t iyadd[4] = { 0,0,1,1 };
Double_t rinrad = gStyle->GetLegoInnerR();
Double_t dangle = 10; //Delta angle for Rapidity option
Double_t yval1l, yval2l;
Double_t xlab1l, xlab2l, ylab1l, ylab2l;
Int_t i, ixa, iya, icx, ixt, iyt;
/* Parameter adjustments */
--t;
f -= 4;
ixt = ia + Hparam.xfirst - 1;
iyt = ib + Hparam.yfirst - 1;
// xval1l = Hparam.xmin;
// xval2l = Hparam.xmax;
yval1l = Hparam.ymin;
yval2l = Hparam.ymax;
xlab1l = gCurrentHist->GetXaxis()->GetXmin();
xlab2l = gCurrentHist->GetXaxis()->GetXmax();
if (Hoption.Logx) {
if (xlab2l>0) {
if (xlab1l>0) xlab1l = TMath::Log10(xlab1l);
else xlab1l = TMath::Log10(0.001*xlab2l);
xlab2l = TMath::Log10(xlab2l);
}
}
ylab1l = gCurrentHist->GetYaxis()->GetXmin();
ylab2l = gCurrentHist->GetYaxis()->GetXmax();
if (Hoption.Logy) {
if (ylab2l>0) {
if (ylab1l>0) ylab1l = TMath::Log10(ylab1l);
else ylab1l = TMath::Log10(0.001*ylab2l);
ylab2l = TMath::Log10(ylab2l);
}
}
for (i = 1; i <= 4; ++i) {
ixa = ixadd[i - 1];
iya = iyadd[i - 1];
Double_t xwid = gCurrentHist->GetXaxis()->GetBinWidth(ixt+ixa);
Double_t ywid = gCurrentHist->GetYaxis()->GetBinWidth(iyt+iya);
// Compute the cell position in cartesian coordinates
// and compute the LOG if necessary
f[i*3 + 1] = gCurrentHist->GetXaxis()->GetBinLowEdge(ixt+ixa) + 0.5*xwid;
f[i*3 + 2] = gCurrentHist->GetYaxis()->GetBinLowEdge(iyt+iya) + 0.5*ywid;
if (Hoption.Logx) {
if (f[i*3 + 1] > 0) f[i*3 + 1] = TMath::Log10(f[i*3 + 1]);
else f[i*3 + 1] = Hparam.xmin;
}
if (Hoption.Logy) {
if (f[i*3 + 2] > 0) f[i*3 + 2] = TMath::Log10(f[i*3 + 2]);
else f[i*3 + 2] = Hparam.ymin;
}
// Transform the cell position in the required coordinate system
if (Hoption.System == kPOLAR) {
f[i*3 + 1] = 360*(f[i*3 + 1] - xlab1l) / (xlab2l - xlab1l);
f[i*3 + 2] = (f[i*3 + 2] - yval1l) / (yval2l - yval1l);
} else if (Hoption.System == kCYLINDRICAL) {
f[i*3 + 1] = 360*(f[i*3 + 1] - xlab1l) / (xlab2l - xlab1l);
} else if (Hoption.System == kSPHERICAL) {
f[i*3 + 1] = 360*(f[i*3 + 1] - xlab1l) / (xlab2l - xlab1l);
f[i*3 + 2] = 360*(f[i*3 + 2] - ylab1l) / (ylab2l - ylab1l);
} else if (Hoption.System == kRAPIDITY) {
f[i*3 + 1] = 360*(f[i*3 + 1] - xlab1l) / (xlab2l - xlab1l);
f[i*3 + 2] = (180 - dangle*2)*(f[i*3 + 2] - ylab1l) / (ylab2l - ylab1l) + dangle;
}
// Get the content of the table. If the X index (ICX) is
// greater than the X size of the table (NCX), that's mean
// IGTABL tried to close the surface and in this case the
// first channel should be used. */
icx = ixt + ixa;
if (icx > Hparam.xlast) icx = 1;
f[i*3+3] = Hparam.factor*gCurrentHist->GetBinContent(icx, iyt + iya);
if (Hoption.Logz) {
if (f[i*3+3] > 0) f[i*3+3] = TMath::Log10(f[i*3+3]);
else f[i*3+3] = Hparam.zmin;
if (f[i*3+3] < Hparam.zmin) f[i*3+3] = Hparam.zmin;
if (f[i*3+3] > Hparam.zmax) f[i*3+3] = Hparam.zmax;
} else {
f[i*3+3] = TMath::Max(Hparam.zmin, f[i*3+3]);
f[i*3+3] = TMath::Min(Hparam.zmax, f[i*3+3]);
}
// The colors on the surface can represent the content or the errors.
// if (fSumw2.fN) t[i] = gCurrentHist->GetBinError(icx, iyt + iya);
// else t[i] = f[i * 3 + 3];
t[i] = f[i * 3 + 3];
}
// Define the position of the colored contours for SURF3
if (Hoption.Surf == 23) {
for (i = 1; i <= 4; ++i) f[i * 3 + 3] = fRmax[2];
}
if (Hoption.System == kCYLINDRICAL || Hoption.System == kSPHERICAL || Hoption.System == kRAPIDITY) {
for (i = 1; i <= 4; ++i) {
f[i*3 + 3] = (1 - rinrad)*((f[i*3 + 3] - Hparam.zmin) /
(Hparam.zmax - Hparam.zmin)) + rinrad;
}
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SurfacePolar(Int_t iordr, Int_t na, Int_t nb, const char *chopt)
{
// Draw surface in polar coordinates
//
// Input: IORDR - order of variables (0 - R,PHI, 1 - PHI,R)
// NA - number of steps along 1st variable
// NB - number of steps along 2nd variable
//
// FUN(IA,IB,F,T) - external routine
// IA - cell number for 1st variable
// IB - cell number for 2nd variable
// F(3,4) - face which corresponds to the cell
// F(1,*) - A
// F(2,*) - B
// F(3,*) - Z
// T(4) - additional function (for example: temperature)
//
// DRFACE(ICODES,XYZ,NP,IFACE,T) - routine for face drawing
// ICODES(*) - set of codes for this face
// ICODES(1) - IA
// ICODES(2) - IB
// XYZ(3,*) - coordinates of nodes
// NP - number of nodes in face
// IFACE(NP) - face
// T(NP) - additional function
//
// CHOPT - options: 'BF' - from BACK to FRONT
// 'FB' - from FRONT to BACK
/* Initialized data */
static Int_t iface[4] = { 1,2,3,4 };
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) {
Error("SurfacePolar", "no TView in current pad");
return;
}
Int_t iphi, jphi, kphi, incr, nphi, iopt, iphi1, iphi2;
Double_t f[12] /* was [3][4] */;
Int_t i, j, incrr, ir1, ir2;
Double_t z;
Int_t ia, ib, ir, jr, nr, icodes[3]; // was icode[2]. One element more to differentiate front & back boxes from data
Double_t tt[4];
Double_t phi, ttt[4], xyz[12] /* was [3][4] */;
ia = ib = 0;
if (iordr == 0) {
jr = 1;
jphi = 2;
nr = na;
nphi = nb;
} else {
jr = 2;
jphi = 1;
nr = nb;
nphi = na;
}
if (nphi > 180) {
Error("SurfacePolar", "too many PHI sectors (%d)", nphi);
return;
}
iopt = 2;
if (*chopt == 'B' || *chopt == 'b') iopt = 1;
// P R E P A R E P H I A R R A Y
// F I N D C R I T I C A L S E C T O R S
kphi = nphi;
if (iordr == 0) ia = nr;
if (iordr != 0) ib = nr;
for (i = 1; i <= nphi; ++i) {
if (iordr == 0) ib = i;
if (iordr != 0) ia = i;
(this->*fSurfaceFunction)(ia, ib, f, tt);
if (i == 1) fAphi[0] = f[jphi - 1];
fAphi[i - 1] = (fAphi[i - 1] + f[jphi - 1]) / (float)2.;
fAphi[i] = f[jphi + 5];
}
view->FindPhiSectors(iopt, kphi, fAphi, iphi1, iphi2);
// D R A W S U R F A C E
icodes[2] = -1; // -1 for data, 0 for front a back boxes
fEdgeIdx = 0; // constant since stacks are not (yet?) handled for surfaces
incr = 1;
iphi = iphi1;
L100:
if (iphi > nphi) goto L300;
// F I N D O R D E R A L O N G R
if (iordr == 0) {ia = nr; ib = iphi;}
else {ia = iphi;ib = nr;}
(this->*fSurfaceFunction)(ia, ib, f, tt);
phi = kRad*((f[jphi - 1] + f[jphi + 5]) / 2);
view->FindNormal(TMath::Cos(phi), TMath::Sin(phi), 0, z);
incrr = 1;
ir1 = 1;
if ((z <= 0 && iopt == 1) || (z > 0 && iopt == 2)) {
incrr = -1;
ir1 = nr;
}
ir2 = nr - ir1 + 1;
// D R A W S U R F A C E F O R S E C T O R
for (ir = ir1; incrr < 0 ? ir >= ir2 : ir <= ir2; ir += incrr) {
if (iordr == 0) ia = ir;
if (iordr != 0) ib = ir;
(this->*fSurfaceFunction)(ia, ib, f, tt);
for (i = 1; i <= 4; ++i) {
j = i;
if (iordr != 0 && i == 2) j = 4;
if (iordr != 0 && i == 4) j = 2;
xyz[j*3 - 3] = f[jr + i*3 - 4]*TMath::Cos(f[jphi + i*3 - 4]*kRad);
xyz[j*3 - 2] = f[jr + i*3 - 4]*TMath::Sin(f[jphi + i*3 - 4]*kRad);
xyz[j*3 - 1] = f[i*3 - 1];
ttt[j - 1] = tt[i - 1];
}
icodes[0] = ia;
icodes[1] = ib;
(this->*fDrawFace)(icodes, xyz, 4, iface, ttt);
}
// N E X T P H I
L300:
iphi += incr;
if (iphi == 0) iphi = kphi;
if (iphi > kphi) iphi = 1;
if (iphi != iphi2) goto L100;
if (incr == 0) return;
if (incr < 0) {
incr = 0;
goto L100;
}
incr = -1;
iphi = iphi1;
goto L300;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SurfaceCylindrical(Int_t iordr, Int_t na, Int_t nb, const char *chopt)
{
// Draw surface in cylindrical coordinates
//
// Input: IORDR - order of variables (0 - Z,PHI, 1 - PHI,Z)
// NA - number of steps along 1st variable
// NB - number of steps along 2nd variable
//
// FUN(IA,IB,F,T) - external routine
// IA - cell number for 1st variable
// IB - cell number for 2nd variable
// F(3,4) - face which corresponds to the cell
// F(1,*) - A
// F(2,*) - B
// F(3,*) - R
// T(4) - additional function (for example: temperature)
//
// DRFACE(ICODES,XYZ,NP,IFACE,T) - routine for face drawing
// ICODES(*) - set of codes for this face
// ICODES(1) - IA
// ICODES(2) - IB
// XYZ(3,*) - coordinates of nodes
// NP - number of nodes in face
// IFACE(NP) - face
// T(NP) - additional function
//
// CHOPT - options: 'BF' - from BACK to FRONT
// 'FB' - from FRONT to BACK
//
//Begin_Html
/*
*/
//End_Html
/* Initialized data */
static Int_t iface[4] = { 1,2,3,4 };
Int_t iphi, jphi, kphi, incr, nphi, iopt, iphi1, iphi2;
Int_t i, j, incrz, nz, iz1, iz2;
Int_t ia, ib, iz, jz, icodes[3]; // was icode[2]. One element more to differentiate front & back boxes from data
Double_t f[12] /* was [3][4] */;
Double_t z;
Double_t tt[4];
Double_t ttt[4], xyz[12] /* was [3][4] */;
ia = ib = 0;
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) {
Error("SurfaceCylindrical", "no TView in current pad");
return;
}
if (iordr == 0) {
jz = 1;
jphi = 2;
nz = na;
nphi = nb;
} else {
jz = 2;
jphi = 1;
nz = nb;
nphi = na;
}
if (nphi > 180) {
Error("SurfaceCylindrical", "too many PHI sectors (%d)", nphi);
return;
}
iopt = 2;
if (*chopt == 'B' || *chopt == 'b') iopt = 1;
// P R E P A R E P H I A R R A Y
// F I N D C R I T I C A L S E C T O R S
kphi = nphi;
if (iordr == 0) ia = nz;
if (iordr != 0) ib = nz;
for (i = 1; i <= nphi; ++i) {
if (iordr == 0) ib = i;
if (iordr != 0) ia = i;
(this->*fSurfaceFunction)(ia, ib, f, tt);
if (i == 1) fAphi[0] = f[jphi - 1];
fAphi[i - 1] = (fAphi[i - 1] + f[jphi - 1]) / (float)2.;
fAphi[i] = f[jphi + 5];
}
view->FindPhiSectors(iopt, kphi, fAphi, iphi1, iphi2);
// F I N D O R D E R A L O N G Z
incrz = 1;
iz1 = 1;
view->FindNormal(0, 0, 1, z);
if ((z <= 0 && iopt == 1) || (z > 0 && iopt == 2)) {
incrz = -1;
iz1 = nz;
}
iz2 = nz - iz1 + 1;
// D R A W S U R F A C E
icodes[2] = -1; // -1 for data, 0 for front a back boxes
fEdgeIdx = 0; // constant since stacks are not (yet?) handled for surfaces
incr = 1;
iphi = iphi1;
L100:
if (iphi > nphi) goto L400;
for (iz = iz1; incrz < 0 ? iz >= iz2 : iz <= iz2; iz += incrz) {
if (iordr == 0) {ia = iz; ib = iphi;}
else {ia = iphi; ib = iz;}
(this->*fSurfaceFunction)(ia, ib, f, tt);
for (i = 1; i <= 4; ++i) {
j = i;
if (iordr == 0 && i == 2) j = 4;
if (iordr == 0 && i == 4) j = 2;
xyz[j*3 - 3] = f[i*3 - 1]*TMath::Cos(f[jphi + i*3 - 4]*kRad);
xyz[j*3 - 2] = f[i*3 - 1]*TMath::Sin(f[jphi + i*3 - 4]*kRad);
xyz[j*3 - 1] = f[jz + i*3 - 4];
ttt[j - 1] = tt[i - 1];
}
icodes[0] = ia;
icodes[1] = ib;
(this->*fDrawFace)(icodes, xyz, 4, iface, ttt);
}
// N E X T P H I
L400:
iphi += incr;
if (iphi == 0) iphi = kphi;
if (iphi > kphi) iphi = 1;
if (iphi != iphi2) goto L100;
if (incr == 0) return;
if (incr < 0) {
incr = 0;
goto L100;
}
incr = -1;
iphi = iphi1;
goto L400;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SurfaceSpherical(Int_t ipsdr, Int_t iordr, Int_t na, Int_t nb, const char *chopt)
{
// Draw surface in spheric coordinates
//
// Input: IPSDR - pseudo-rapidity flag
// IORDR - order of variables (0 - THETA,PHI; 1 - PHI,THETA)
// NA - number of steps along 1st variable
// NB - number of steps along 2nd variable
//
// FUN(IA,IB,F,T) - external routine
// IA - cell number for 1st variable
// IB - cell number for 2nd variable
// F(3,4) - face which corresponds to the cell
// F(1,*) - A
// F(2,*) - B
// F(3,*) - R
// T(4) - additional function (for example: temperature)
//
// DRFACE(ICODES,XYZ,NP,IFACE,T) - routine for face drawing
// ICODES(*) - set of codes for this face
// ICODES(1) - IA
// ICODES(2) - IB
// XYZ(3,*) - coordinates of nodes
// NP - number of nodes in face
// IFACE(NP) - face
// T(NP) - additional function
//
// CHOPT - options: 'BF' - from BACK to FRONT
// 'FB' - from FRONT to BACK
/* Initialized data */
static Int_t iface[4] = { 1,2,3,4 };
Int_t iphi, jphi, kphi, incr, nphi, iopt, iphi1, iphi2;
Int_t i, j, incrth, ith, jth, kth, nth, mth, ith1, ith2;
Int_t ia, ib, icodes[3]; // was icode[2]. One element more to differentiate front & back boxes from data
Double_t f[12] /* was [3][4] */;
Double_t tt[4];
Double_t phi;
Double_t ttt[4], xyz[12] /* was [3][4] */;
ia = ib = 0;
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) {
Error("SurfaceSpherical", "no TView in current pad");
return;
}
if (iordr == 0) {
jth = 1;
jphi = 2;
nth = na;
nphi = nb;
} else {
jth = 2;
jphi = 1;
nth = nb;
nphi = na;
}
if (nth > 180) {
Error("SurfaceSpherical", "too many THETA sectors (%d)", nth);
return;
}
if (nphi > 180) {
Error("SurfaceSpherical", "too many PHI sectors (%d)", nphi);
return;
}
iopt = 2;
if (*chopt == 'B' || *chopt == 'b') iopt = 1;
// P R E P A R E P H I A R R A Y
// F I N D C R I T I C A L P H I S E C T O R S
kphi = nphi;
mth = nth / 2;
if (mth == 0) mth = 1;
if (iordr == 0) ia = mth;
if (iordr != 0) ib = mth;
for (i = 1; i <= nphi; ++i) {
if (iordr == 0) ib = i;
if (iordr != 0) ia = i;
(this->*fSurfaceFunction)(ia, ib, f, tt);
if (i == 1) fAphi[0] = f[jphi - 1];
fAphi[i - 1] = (fAphi[i - 1] + f[jphi - 1]) / (float)2.;
fAphi[i] = f[jphi + 5];
}
view->FindPhiSectors(iopt, kphi, fAphi, iphi1, iphi2);
// P R E P A R E T H E T A A R R A Y
if (iordr == 0) ib = 1;
if (iordr != 0) ia = 1;
for (i = 1; i <= nth; ++i) {
if (iordr == 0) ia = i;
if (iordr != 0) ib = i;
(this->*fSurfaceFunction)(ia, ib, f, tt);
if (i == 1) fAphi[0] = f[jth - 1];
fAphi[i - 1] = (fAphi[i - 1] + f[jth - 1]) / (float)2.;
fAphi[i] = f[jth + 5];
}
// D R A W S U R F A C E
icodes[2] = -1; // -1 for data, 0 for front a back boxes
fEdgeIdx = 0; // constant since stacks are not (yet?) handled for surfaces
kth = nth;
incr = 1;
iphi = iphi1;
L100:
if (iphi > nphi) goto L500;
// F I N D C R I T I C A L T H E T A S E C T O R S
if (iordr == 0) {ia = mth; ib = iphi;}
else {ia = iphi;ib = mth;}
(this->*fSurfaceFunction)(ia, ib, f, tt);
phi = (f[jphi - 1] + f[jphi + 5]) / (float)2.;
view->FindThetaSectors(iopt, phi, kth, fAphi, ith1, ith2);
incrth = 1;
ith = ith1;
L200:
if (ith > nth) goto L400;
if (iordr == 0) ia = ith;
if (iordr != 0) ib = ith;
(this->*fSurfaceFunction)(ia, ib, f, tt);
if (ipsdr == 1) {
for (i = 1; i <= 4; ++i) {
j = i;
if (iordr != 0 && i == 2) j = 4;
if (iordr != 0 && i == 4) j = 2;
xyz[j * 3 - 3] = f[i*3 - 1]*TMath::Cos(f[jphi + i*3 - 4]*kRad);
xyz[j * 3 - 2] = f[i*3 - 1]*TMath::Sin(f[jphi + i*3 - 4]*kRad);
xyz[j * 3 - 1] = f[i*3 - 1]*TMath::Cos(f[jth + i*3 - 4]*kRad) /
TMath::Sin(f[jth + i*3 - 4]*kRad);
ttt[j - 1] = tt[i - 1];
}
} else {
for (i = 1; i <= 4; ++i) {
j = i;
if (iordr != 0 && i == 2) j = 4;
if (iordr != 0 && i == 4) j = 2;
xyz[j*3 - 3] = f[i*3 - 1]*TMath::Sin(f[jth + i*3 - 4]*kRad)*TMath::Cos(f[jphi + i*3 - 4]*kRad);
xyz[j*3 - 2] = f[i*3 - 1]*TMath::Sin(f[jth + i*3 - 4]*kRad)*TMath::Sin(f[jphi + i*3 - 4]*kRad);
xyz[j*3 - 1] = f[i*3 - 1]*TMath::Cos(f[jth + i*3 - 4]*kRad);
ttt[j - 1] = tt[i - 1];
}
}
icodes[0] = ia;
icodes[1] = ib;
(this->*fDrawFace)(icodes, xyz, 4, iface, ttt);
// N E X T T H E T A
L400:
ith += incrth;
if (ith == 0) ith = kth;
if (ith > kth) ith = 1;
if (ith != ith2) goto L200;
if (incrth == 0) goto L500;
if (incrth < 0) {
incrth = 0;
goto L200;
}
incrth = -1;
ith = ith1;
goto L400;
// N E X T P H I
L500:
iphi += incr;
if (iphi == 0) iphi = kphi;
if (iphi > kphi) iphi = 1;
if (iphi != iphi2) goto L100;
if (incr == 0) return;
if (incr < 0) {
incr = 0;
goto L100;
}
incr = -1;
iphi = iphi1;
goto L500;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::SurfaceProperty(Double_t qqa, Double_t qqd, Double_t qqs, Int_t nnqs, Int_t &irep)
{
// Set surface property coefficients
//
// Input: QQA - diffusion coefficient for diffused light [0.,1.]
// QQD - diffusion coefficient for direct light [0.,1.]
// QQS - diffusion coefficient for reflected light [0.,1.]
// NNCS - power coefficient for reflected light (.GE.1)
//
// --
// Lightness model formula: Y = YD*QA + > YLi*(QD*cosNi+QS*cosRi)
// --
//
// Output: IREP - reply : 0 - O.K.
// -1 - error in cooefficients
irep = 0;
if (qqa < 0 || qqa > 1 || qqd < 0 || qqd > 1 || qqs < 0 || qqs > 1 || nnqs < 1) {
Error("SurfaceProperty", "error in coefficients");
irep = -1;
return;
}
fQA = qqa;
fQD = qqd;
fQS = qqs;
fNqs = nnqs;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::ImplicitFunction(Double_t *rmin, Double_t *rmax,
Int_t nx, Int_t ny, Int_t nz, const char *chopt)
{
// Draw implicit function FUN(X,Y,Z) = 0 in cartesian coordinates using
// hidden surface removal algorithm "Painter".
//
// Input: FUN - external routine FUN(X,Y,Z)
// RMIN(3) - min scope coordinates
// RMAX(3) - max scope coordinates
// NX - number of steps along X
// NY - number of steps along Y
// NZ - number of steps along Z
//
// DRFACE(ICODES,XYZ,NP,IFACE,T) - routine for face drawing
// ICODES(*) - set of codes for this face
// ICODES(1) - 1
// ICODES(2) - 1
// ICODES(3) - 1
// NP - number of nodes in face
// IFACE(NP) - face
// T(NP) - additional function (lightness)
//
// CHOPT - options: 'BF' - from BACK to FRONT
// 'FB' - from FRONT to BACK
Int_t ix, iy, iz;
Int_t ix1, iy1, iz1;
Int_t ix2, iy2, iz2;
Int_t incr, incrx, incry, incrz;
Int_t icodes[3], i, i1, i2, k, nnod, ntria;
Double_t x1=0, x2=0, y1, y2, z1, z2;
Double_t dx, dy, dz;
Double_t p[8][3], pf[8], pn[8][3], t[3], fsurf, w;
Double_t xyz[kNmaxp][3], xyzn[kNmaxp][3], grad[kNmaxp][3];
Double_t dtria[kNmaxt][6], abcd[kNmaxt][4];
Int_t itria[kNmaxt][3], iorder[kNmaxt];
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) {
Error("ImplicitFunction", "no TView in current pad");
return;
}
Double_t *tnorm = view->GetTnorm();
if (!tnorm) return;
// D E F I N E O R D E R O F D R A W I N G
if (*chopt == 'B' || *chopt == 'b') {
incrx = +1;
incry = +1;
incrz = +1;
} else {
incrx = -1;
incry = -1;
incrz = -1;
}
if (tnorm[8] < 0.) incrx =-incrx;
if (tnorm[9] < 0.) incry =-incry;
if (tnorm[10] < 0.) incrz =-incrz;
ix1 = 1;
iy1 = 1;
iz1 = 1;
if (incrx == -1) ix1 = nx;
if (incry == -1) iy1 = ny;
if (incrz == -1) iz1 = nz;
ix2 = nx - ix1 + 1;
iy2 = ny - iy1 + 1;
iz2 = nz - iz1 + 1;
dx = (rmax[0]-rmin[0]) / nx;
dy = (rmax[1]-rmin[1]) / ny;
dz = (rmax[2]-rmin[2]) / nz;
// Define the colors used to draw the function
Float_t r=0., g=0., b=0., hue, light, satur, light2;
TColor *colref = gROOT->GetColor(fgCurrentF3->GetFillColor());
if (colref) colref->GetRGB(r, g, b);
TColor::RGBtoHLS(r, g, b, hue, light, satur);
TColor *acol;
acol = gROOT->GetColor(kF3FillColor1);
if (acol) acol->SetRGB(r, g, b);
if (light >= 0.5) {
light2 = .5*light;
} else {
light2 = 1-.5*light;
}
TColor::HLStoRGB(hue, light2, satur, r, g, b);
acol = gROOT->GetColor(kF3FillColor2);
if (acol) acol->SetRGB(r, g, b);
colref = gROOT->GetColor(fgCurrentF3->GetLineColor());
if (colref) colref->GetRGB(r, g, b);
acol = gROOT->GetColor(kF3LineColor);
if (acol) acol->SetRGB(r, g, b);
// D R A W F U N C T I O N
for (iz = iz1; incrz < 0 ? iz >= iz2 : iz <= iz2; iz += incrz) {
z1 = (iz-1)*dz + rmin[2];
z2 = z1 + dz;
p[0][2] = z1;
p[1][2] = z1;
p[2][2] = z1;
p[3][2] = z1;
p[4][2] = z2;
p[5][2] = z2;
p[6][2] = z2;
p[7][2] = z2;
for (iy = iy1; incry < 0 ? iy >= iy2 : iy <= iy2; iy += incry) {
y1 = (iy-1)*dy + rmin[1];
y2 = y1 + dy;
p[0][1] = y1;
p[1][1] = y1;
p[2][1] = y2;
p[3][1] = y2;
p[4][1] = y1;
p[5][1] = y1;
p[6][1] = y2;
p[7][1] = y2;
if (incrx == +1) {
x2 = rmin[0];
pf[1] = fgCurrentF3->Eval(x2,y1,z1);
pf[2] = fgCurrentF3->Eval(x2,y2,z1);
pf[5] = fgCurrentF3->Eval(x2,y1,z2);
pf[6] = fgCurrentF3->Eval(x2,y2,z2);
} else {
x1 = rmax[0];
pf[0] = fgCurrentF3->Eval(x1,y1,z1);
pf[3] = fgCurrentF3->Eval(x1,y2,z1);
pf[4] = fgCurrentF3->Eval(x1,y1,z2);
pf[7] = fgCurrentF3->Eval(x1,y2,z2);
}
for (ix = ix1; incrx < 0 ? ix >= ix2 : ix <= ix2; ix += incrx) {
icodes[0] = ix;
icodes[1] = iy;
icodes[2] = iz;
if (incrx == +1) {
x1 = x2;
x2 = x2 + dx;
pf[0] = pf[1];
pf[3] = pf[2];
pf[4] = pf[5];
pf[7] = pf[6];
pf[1] = fgCurrentF3->Eval(x2,y1,z1);
pf[2] = fgCurrentF3->Eval(x2,y2,z1);
pf[5] = fgCurrentF3->Eval(x2,y1,z2);
pf[6] = fgCurrentF3->Eval(x2,y2,z2);
} else {
x2 = x1;
x1 = x1 - dx;
pf[1] = pf[0];
pf[2] = pf[3];
pf[5] = pf[4];
pf[6] = pf[7];
pf[0] = fgCurrentF3->Eval(x1,y1,z1);
pf[3] = fgCurrentF3->Eval(x1,y2,z1);
pf[4] = fgCurrentF3->Eval(x1,y1,z2);
pf[7] = fgCurrentF3->Eval(x1,y2,z2);
}
if (pf[0] >= -kFdel) goto L110;
if (pf[1] >= -kFdel) goto L120;
if (pf[2] >= -kFdel) goto L120;
if (pf[3] >= -kFdel) goto L120;
if (pf[4] >= -kFdel) goto L120;
if (pf[5] >= -kFdel) goto L120;
if (pf[6] >= -kFdel) goto L120;
if (pf[7] >= -kFdel) goto L120;
goto L510;
L110:
if (pf[1] < -kFdel) goto L120;
if (pf[2] < -kFdel) goto L120;
if (pf[3] < -kFdel) goto L120;
if (pf[4] < -kFdel) goto L120;
if (pf[5] < -kFdel) goto L120;
if (pf[6] < -kFdel) goto L120;
if (pf[7] < -kFdel) goto L120;
goto L510;
L120:
p[0][0] = x1;
p[1][0] = x2;
p[2][0] = x2;
p[3][0] = x1;
p[4][0] = x1;
p[5][0] = x2;
p[6][0] = x2;
p[7][0] = x1;
// F I N D G R A D I E N T S
// Find X-gradient
if (ix == 1) {
pn[0][0] = (pf[1] - pf[0]) / dx;
pn[3][0] = (pf[2] - pf[3]) / dx;
pn[4][0] = (pf[5] - pf[4]) / dx;
pn[7][0] = (pf[6] - pf[7]) / dx;
} else {
pn[0][0] = (pf[1] - fgCurrentF3->Eval(x1-dx,y1,z1)) / (dx + dx);
pn[3][0] = (pf[2] - fgCurrentF3->Eval(x1-dx,y2,z1)) / (dx + dx);
pn[4][0] = (pf[5] - fgCurrentF3->Eval(x1-dx,y1,z2)) / (dx + dx);
pn[7][0] = (pf[6] - fgCurrentF3->Eval(x1-dx,y2,z2)) / (dx + dx);
}
if (ix == nx) {
pn[1][0] = (pf[1] - pf[0]) / dx;
pn[2][0] = (pf[2] - pf[3]) / dx;
pn[5][0] = (pf[5] - pf[4]) / dx;
pn[6][0] = (pf[6] - pf[7]) / dx;
} else {
pn[1][0] = (fgCurrentF3->Eval(x2+dx,y1,z1) - pf[0]) / (dx + dx);
pn[2][0] = (fgCurrentF3->Eval(x2+dx,y2,z1) - pf[3]) / (dx + dx);
pn[5][0] = (fgCurrentF3->Eval(x2+dx,y1,z2) - pf[4]) / (dx + dx);
pn[6][0] = (fgCurrentF3->Eval(x2+dx,y2,z2) - pf[7]) / (dx + dx);
}
// Find Y-gradient
if (iy == 1) {
pn[0][1] = (pf[3] - pf[0]) / dy;
pn[1][1] = (pf[2] - pf[1]) / dy;
pn[4][1] = (pf[7] - pf[4]) / dy;
pn[5][1] = (pf[6] - pf[5]) / dy;
} else {
pn[0][1] = (pf[3] - fgCurrentF3->Eval(x1,y1-dy,z1)) / (dy + dy);
pn[1][1] = (pf[2] - fgCurrentF3->Eval(x2,y1-dy,z1)) / (dy + dy);
pn[4][1] = (pf[7] - fgCurrentF3->Eval(x1,y1-dy,z2)) / (dy + dy);
pn[5][1] = (pf[6] - fgCurrentF3->Eval(x2,y1-dy,z2)) / (dy + dy);
}
if (iy == ny) {
pn[2][1] = (pf[2] - pf[1]) / dy;
pn[3][1] = (pf[3] - pf[0]) / dy;
pn[6][1] = (pf[6] - pf[5]) / dy;
pn[7][1] = (pf[7] - pf[4]) / dy;
} else {
pn[2][1] = (fgCurrentF3->Eval(x2,y2+dy,z1) - pf[1]) / (dy + dy);
pn[3][1] = (fgCurrentF3->Eval(x1,y2+dy,z1) - pf[0]) / (dy + dy);
pn[6][1] = (fgCurrentF3->Eval(x2,y2+dy,z2) - pf[5]) / (dy + dy);
pn[7][1] = (fgCurrentF3->Eval(x1,y2+dy,z2) - pf[4]) / (dy + dy);
}
// Find Z-gradient
if (iz == 1) {
pn[0][2] = (pf[4] - pf[0]) / dz;
pn[1][2] = (pf[5] - pf[1]) / dz;
pn[2][2] = (pf[6] - pf[2]) / dz;
pn[3][2] = (pf[7] - pf[3]) / dz;
} else {
pn[0][2] = (pf[4] - fgCurrentF3->Eval(x1,y1,z1-dz)) / (dz + dz);
pn[1][2] = (pf[5] - fgCurrentF3->Eval(x2,y1,z1-dz)) / (dz + dz);
pn[2][2] = (pf[6] - fgCurrentF3->Eval(x2,y2,z1-dz)) / (dz + dz);
pn[3][2] = (pf[7] - fgCurrentF3->Eval(x1,y2,z1-dz)) / (dz + dz);
}
if (iz == nz) {
pn[4][2] = (pf[4] - pf[0]) / dz;
pn[5][2] = (pf[5] - pf[1]) / dz;
pn[6][2] = (pf[6] - pf[2]) / dz;
pn[7][2] = (pf[7] - pf[3]) / dz;
} else {
pn[4][2] = (fgCurrentF3->Eval(x1,y1,z2+dz) - pf[0]) / (dz + dz);
pn[5][2] = (fgCurrentF3->Eval(x2,y1,z2+dz) - pf[1]) / (dz + dz);
pn[6][2] = (fgCurrentF3->Eval(x2,y2,z2+dz) - pf[2]) / (dz + dz);
pn[7][2] = (fgCurrentF3->Eval(x1,y2,z2+dz) - pf[3]) / (dz + dz);
}
fsurf = 0.;
MarchingCube(fsurf, p, pf, pn, nnod, ntria, xyz, grad, itria);
if (ntria == 0) goto L510;
for ( i=1 ; i<=nnod ; i++ ) {
view->WCtoNDC(&xyz[i-1][0], &xyzn[i-1][0]);
Luminosity(&grad[i-1][0], w);
grad[i-1][0] = w;
}
ZDepth(xyzn, ntria, itria, dtria, abcd, (Int_t*)iorder);
if (ntria == 0) goto L510;
incr = 1;
if (*chopt == 'B' || *chopt == 'b') incr =-1;
i1 = 1;
if (incr == -1) i1 = ntria;
i2 = ntria - i1 + 1;
// If clipping box is on do not draw the triangles
if (fgF3Clipping) {
if(x2<=fgF3XClip && y2 <=fgF3YClip && z2>=fgF3ZClip) goto L510;
}
// Draw triangles
for (i=i1; incr < 0 ? i >= i2 : i <= i2; i += incr) {
k = iorder[i-1];
t[0] = grad[TMath::Abs(itria[k-1][0])-1][0];
t[1] = grad[TMath::Abs(itria[k-1][1])-1][0];
t[2] = grad[TMath::Abs(itria[k-1][2])-1][0];
(this->*fDrawFace)(icodes, (Double_t*)xyz, 3, &itria[k-1][0], t);
}
L510:
continue;
}
}
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::MarchingCube(Double_t fiso, Double_t p[8][3],
Double_t f[8], Double_t g[8][3],
Int_t &nnod, Int_t &ntria,
Double_t xyz[][3],
Double_t grad[][3],
Int_t itria[][3])
{
// Topological decider for "Marching Cubes" algorithm Find set of triangles
// aproximating the isosurface F(x,y,z)=Fiso inside the cube
// (improved version)
//
// Input: FISO - function value for isosurface
// P(3,8) - cube vertexes
// F(8) - function values at the vertexes
// G(3,8) - function gradients at the vertexes
//
// Output: NNOD - number of nodes (maximum 13)
// NTRIA - number of triangles (maximum 12)
// XYZ(3,*) - nodes
// GRAD(3,*) - node normales (not normalized)
// ITRIA(3,*) - triangles
//
static Int_t irota[24][8] = { { 1,2,3,4,5,6,7,8 }, { 2,3,4,1,6,7,8,5 },
{ 3,4,1,2,7,8,5,6 }, { 4,1,2,3,8,5,6,7 },
{ 6,5,8,7,2,1,4,3 }, { 5,8,7,6,1,4,3,2 },
{ 8,7,6,5,4,3,2,1 }, { 7,6,5,8,3,2,1,4 },
{ 2,6,7,3,1,5,8,4 }, { 6,7,3,2,5,8,4,1 },
{ 7,3,2,6,8,4,1,5 }, { 3,2,6,7,4,1,5,8 },
{ 5,1,4,8,6,2,3,7 }, { 1,4,8,5,2,3,7,6 },
{ 4,8,5,1,3,7,6,2 }, { 8,5,1,4,7,6,2,3 },
{ 5,6,2,1,8,7,3,4 }, { 6,2,1,5,7,3,4,8 },
{ 2,1,5,6,3,4,8,7 }, { 1,5,6,2,4,8,7,3 },
{ 4,3,7,8,1,2,6,5 }, { 3,7,8,4,2,6,5,1 },
{ 7,8,4,3,6,5,1,2 }, { 8,4,3,7,5,1,2,6 } };
static Int_t iwhat[21] = { 1,3,5,65,50,67,74,51,177,105,113,58,165,178,
254,252,250,190,205,188,181 };
Int_t j, i, i1, i2, i3, ir, irt=0, k, k1, k2, incr, icase=0, n;
Int_t itr[3];
nnod = 0;
ntria = 0;
// F I N D C O N F I G U R A T I O N T Y P E
for ( i=1; i<=8 ; i++) {
fF8[i-1] = f[i-1] - fiso;
}
for ( ir=1 ; ir<=24 ; ir++ ) {
k = 0;
incr = 1;
for ( i=1 ; i<=8 ; i++ ) {
if (fF8[irota[ir-1][i-1]-1] >= 0.) k = k + incr;
incr = incr + incr;
}
if (k==0 || k==255) return;
for ( i=1 ; i<=21 ; i++ ) {
if (k != iwhat[i-1]) continue;
icase = i;
irt = ir;
goto L200;
}
}
// R O T A T E C U B E
L200:
for ( i=1 ; i<=8 ; i++ ) {
k = irota[irt-1][i-1];
fF8[i-1] = f[k-1] - fiso;
fP8[i-1][0] = p[k-1][0];
fP8[i-1][1] = p[k-1][1];
fP8[i-1][2] = p[k-1][2];
fG8[i-1][0] = g[k-1][0];
fG8[i-1][1] = g[k-1][1];
fG8[i-1][2] = g[k-1][2];
}
// V A R I O U S C O N F I G U R A T I O N S
n = 0;
switch ((int)icase) {
case 1:
case 15:
MarchingCubeCase00(1, 4, 9, 0, 0, 0, nnod, ntria, xyz, grad, itria);
goto L400;
case 2:
case 16:
MarchingCubeCase00(2, 4, 9, 10, 0, 0, nnod, ntria, xyz, grad, itria);
goto L400;
case 3:
case 17:
MarchingCubeCase03(nnod, ntria, xyz, grad, itria);
goto L400;
case 4:
case 18:
MarchingCubeCase04(nnod, ntria, xyz, grad, itria);
goto L400;
case 5:
case 19:
MarchingCubeCase00(6, 2, 1, 9, 8, 0, nnod, ntria, xyz, grad, itria);
goto L400;
case 6:
case 20:
MarchingCubeCase06(nnod, ntria, xyz, grad, itria);
goto L400;
case 7:
case 21:
MarchingCubeCase07(nnod, ntria, xyz, grad, itria);
goto L400;
case 8:
MarchingCubeCase00(2, 4, 8, 6, 0, 0, nnod, ntria, xyz, grad, itria);
goto L500;
case 9:
MarchingCubeCase00(1, 4, 12, 7, 6, 10, nnod, ntria, xyz, grad, itria);
goto L500;
case 0:
MarchingCubeCase10(nnod, ntria, xyz, grad, itria);
goto L500;
case 11:
MarchingCubeCase00(1, 4, 8, 7, 11, 10, nnod, ntria, xyz, grad, itria);
goto L500;
case 12:
MarchingCubeCase12(nnod, ntria, xyz, grad, itria);
goto L500;
case 13:
MarchingCubeCase13(nnod, ntria, xyz, grad, itria);
goto L500;
case 14:
MarchingCubeCase00(1, 9, 12, 7, 6, 2, nnod, ntria, xyz, grad, itria);
goto L500;
}
// I F N E E D E D , I N V E R T T R I A N G L E S
L400:
if (ntria == 0) return;
if (icase <= 14) goto L500;
for ( i=1; i<=ntria ; i++ ) {
i1 = TMath::Abs(itria[i-1][0]);
i2 = TMath::Abs(itria[i-1][1]);
i3 = TMath::Abs(itria[i-1][2]);
if (itria[i-1][2] < 0) i1 =-i1;
if (itria[i-1][1] < 0) i3 =-i3;
if (itria[i-1][0] < 0) i2 =-i2;
itria[i-1][0] = i1;
itria[i-1][1] = i3;
itria[i-1][2] = i2;
}
// R E M O V E V E R Y S M A L L T R I A N G L E S
L500:
n = n + 1;
L510:
if (n > ntria) return;
for ( i=1 ; i<=3 ; i++ ) {
i1 = i;
i2 = i + 1;
if (i == 3) i2 = 1;
k1 = TMath::Abs(itria[n-1][i1-1]);
k2 = TMath::Abs(itria[n-1][i2-1]);
if (TMath::Abs(xyz[k1-1][0]-xyz[k2-1][0]) > kDel) continue;
if (TMath::Abs(xyz[k1-1][1]-xyz[k2-1][1]) > kDel) continue;
if (TMath::Abs(xyz[k1-1][2]-xyz[k2-1][2]) > kDel) continue;
i3 = i - 1;
if (i == 1) i3 = 3;
goto L530;
}
goto L500;
// R E M O V E T R I A N G L E
L530:
for ( i=1 ; i<=3 ; i++ ) {
itr[i-1] = itria[n-1][i-1];
itria[n-1][i-1] = itria[ntria-1][i-1];
}
ntria = ntria - 1;
if (ntria == 0) return;
if (itr[i2-1]*itr[i3-1] > 0) goto L510;
// C O R R E C T O T H E R T R I A N G L E S
if (itr[i2-1] < 0) {
k1 =-itr[i2-1];
k2 =-TMath::Abs(itr[i3-1]);
}
if (itr[i3-1] < 0) {
k1 =-itr[i3-1];
k2 =-TMath::Abs(itr[i1-1]);
}
for ( j=1 ; j<=ntria ; j++ ) {
for ( i=1 ; i<=3 ; i++ ) {
if (itria[j-1][i-1] != k2) continue;
i2 = TMath::Abs(itria[j-1][0]);
if (i != 3) i2 = TMath::Abs(itria[j-1][i]);
if (i2 == k1) itria[j-1][i-1] =-itria[j-1][i-1];
goto L560;
}
L560:
continue;
}
goto L510;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::MarchingCubeCase00(Int_t k1, Int_t k2, Int_t k3,
Int_t k4, Int_t k5, Int_t k6,
Int_t &nnod, Int_t &ntria,
Double_t xyz[52][3],
Double_t grad[52][3],
Int_t itria[48][3])
{
// Consideration of trivial cases: 1,2,5,8,9,11,14
//
// Input: K1,...,K6 - edges intersected with isosurface
//
// Output: the same as for IHMCUB
static Int_t it[4][4][3] = { { { 1,2, 3 }, { 0,0, 0 }, { 0,0, 0 }, { 0,0, 0 } },
{ { 1,2,-3 }, {-1,3, 4 }, { 0,0, 0 }, { 0,0, 0 } },
{ { 1,2,-3 }, {-1,3,-4 }, {-1,4, 5 }, { 0,0, 0 } },
{ { 1,2,-3 }, {-1,3,-4 }, {-4,6,-1 }, { 4,5,-6 } }
};
Int_t it2[4][3], i, j;
Int_t ie[6];
// S E T N O D E S & N O R M A L E S
ie[0] = k1;
ie[1] = k2;
ie[2] = k3;
ie[3] = k4;
ie[4] = k5;
ie[5] = k6;
nnod = 6;
if (ie[5] == 0) nnod = 5;
if (ie[4] == 0) nnod = 4;
if (ie[3] == 0) nnod = 3;
MarchingCubeFindNodes(nnod, ie, xyz, grad);
// S E T T R I A N G L E S
ntria = nnod - 2;
// Copy "it" into a 2D matrix to be passed to MarchingCubeSetTriangles
for ( i=0; i<3 ; i++) {
for ( j=0; j<4 ; j++) {
it2[j][i] = it[ntria-1][j][i];
}
}
MarchingCubeSetTriangles(ntria, it2, itria);
}
//______________________________________________________________________________
void TPainter3dAlgorithms::MarchingCubeCase03(Int_t &nnod, Int_t &ntria,
Double_t xyz[52][3], Double_t grad[52][3], Int_t itria[48][3])
{
// Consider case No 3
//
// Input: see common HCMCUB
//
// Output: the same as for IHMCUB
Double_t f0;
static Int_t ie[6] = { 4,9,1, 2,11,3 };
static Int_t it1[2][3] = { { 1,2,3 }, { 4,5,6 } };
static Int_t it2[4][3] = { { 1,2,-5 }, { -1,5,6 }, { 5,-2,4 }, { -4,2,3 } };
// S E T N O D E S & N O R M A L E S
nnod = 6;
MarchingCubeFindNodes(nnod, ie, xyz, grad);
// F I N D C O N F I G U R A T I O N
f0 = (fF8[0]*fF8[2]-fF8[1]*fF8[3]) / (fF8[0]+fF8[2]-fF8[1]-fF8[3]);
if (f0>=0. && fF8[0]>=0.) goto L100;
if (f0<0. && fF8[0]<0.) goto L100;
ntria = 2;
MarchingCubeSetTriangles(ntria, it1, itria);
return;
// N O T S E P A R A T E D F R O N T F A C E
L100:
ntria = 4;
MarchingCubeSetTriangles(ntria, it2, itria);
}
//______________________________________________________________________________
void TPainter3dAlgorithms::MarchingCubeCase04(Int_t &nnod, Int_t &ntria,
Double_t xyz[52][3], Double_t grad[52][3], Int_t itria[48][3])
{
// Consider case No 4
//
// Input: see common HCMCUB
//
// Output: the same as for IHMCUB
Int_t irep;
static Int_t ie[6] = { 4,9,1, 7,11,6 };
static Int_t it1[2][3] = { { 1,2,3 }, { 4,5,6 } };
static Int_t it2[6][3] = { { 1,2,4 }, { 2,3,6 }, { 3,1,5 },
{ 4,5,1 }, { 5,6,3 }, { 6,4,2 } };
// S E T N O D E S & N O R M A L E S
nnod = 6;
MarchingCubeFindNodes(nnod, ie, xyz, grad);
// I S T H E R E S U R F A C E P E N E T R A T I O N ?
MarchingCubeSurfacePenetration(fF8[0], fF8[1], fF8[2], fF8[3],
fF8[4], fF8[5], fF8[6], fF8[7], irep);
if (irep == 0) {
ntria = 2;
MarchingCubeSetTriangles(ntria, it1, itria);
} else {
ntria = 6;
MarchingCubeSetTriangles(ntria, it2, itria);
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::MarchingCubeCase06(Int_t &nnod, Int_t &ntria,
Double_t xyz[52][3], Double_t grad[52][3], Int_t itria[48][3])
{
// Consider case No 6
//
// Input: see common HCMCUB
//
// Output: the same as for IHMCUB
Double_t f0;
Int_t irep;
static Int_t ie[7] = { 2,4,9,10, 6,7,11 };
static Int_t it1[5][3] = { { 6,7,-1 }, { -6,1,2 }, { 6,2,3 }, { 6,3,-4 }, { -6,4,5 } };
static Int_t it2[3][3] = { { 1,2,-3 }, { -1,3,4 }, { 5,6,7 } };
static Int_t it3[7][3] = { { 6,7,-1 }, { -6,1,2 }, { 6,2,3 }, { 6,3,-4 }, { -6,4,5 },
{ 1,7,-5 }, { -1,5,4 } };
// S E T N O D E S & N O R M A L E S
nnod = 7;
MarchingCubeFindNodes(nnod, ie, xyz, grad);
// F I N D C O N F I G U R A T I O N
f0 = (fF8[1]*fF8[6]-fF8[5]*fF8[2]) / (fF8[1]+fF8[6]-fF8[5]-fF8[2]);
if (f0>=0. && fF8[1]>=0.) goto L100;
if (f0<0. && fF8[1]<0.) goto L100;
// I S T H E R E S U R F A C E P E N E T R A T I O N ?
MarchingCubeSurfacePenetration(fF8[2], fF8[1], fF8[5], fF8[6],
fF8[3], fF8[0], fF8[4], fF8[7], irep);
if (irep == 1) {
ntria = 7;
MarchingCubeSetTriangles(ntria, it3, itria);
} else {
ntria = 3;
MarchingCubeSetTriangles(ntria, it2, itria);
}
return;
// N O T S E P A R A T E D R I G H T F A C E
L100:
ntria = 5;
MarchingCubeSetTriangles(ntria, it1, itria);
}
//______________________________________________________________________________
void TPainter3dAlgorithms::MarchingCubeCase07(Int_t &nnod, Int_t &ntria,
Double_t xyz[52][3], Double_t grad[52][3],
Int_t itria[48][3])
{
// Consider case No 7
//
// Input: see common HCMCUB
//
// Output: the same as for IHMCUB
Double_t f1, f2, f3;
Int_t icase, irep;
static Int_t ie[9] = { 3,12,4, 1,10,2, 11,6,7 };
static Int_t it[9][9][3] = {
{{ 1,2,3}, { 4,5,6}, { 7,8,9}, { 0,0,0}, { 0,0,0}, { 0,0,0}, { 0,0,0}, { 0,0,0}, { 0,0,0}},
{{ 1,2,3}, { 4,9,-7}, { -4,7,6}, { 9,4,-5}, { -9,5,8}, { 0,0,0}, { 0,0,0}, { 0,0,0}, { 0,0,0}},
{{ 4,5,6}, { 8,3,-1}, { -8,1,7}, { 3,8,-9}, { -3,9,2}, { 0,0,0}, { 0,0,0}, { 0,0,0}, { 0,0,0}},
{{-10,2,3}, {10,3,-1}, {-10,1,7}, {10,7,-6}, {-10,6,4}, {10,4,-5}, {-10,5,8}, { 10,8,9}, {10,9,-2}},
{{ 7,8,9}, { 2,5,-6}, { -2,6,1}, { 5,2,-3}, { -5,3,4}, { 0,0,0}, { 0,0,0}, { 0,0,0}, { 0,0,0}},
{{-10,1,2}, {10,2,-3}, {-10,3,4}, { 10,4,5}, {10,5,-8}, {-10,8,9}, {10,9,-7}, {-10,7,6}, {10,6,-1}},
{{ 10,2,3}, {10,3,-4}, {-10,4,5}, {10,5,-6}, {-10,6,1}, {10,1,-7}, {-10,7,8}, {10,8,-9}, {-10,9,2}},
{{ 1,7,6}, { -4,2,3}, {-4,9,-2}, {-9,4,-5}, { -9,5,8}, { 0,0,0}, { 0,0,0}, { 0,0,0}, { 0,0,0}},
{{ -1,9,2}, { 1,2,3}, { 1,3,-4}, { 6,-1,4}, { 6,4,5}, { 6,-5,7}, { -7,5,8}, { 7,8,9}, { 7,-9,1}}
};
Int_t it2[9][3], i, j;
// S E T N O D E S & N O R M A L E S
nnod = 9;
MarchingCubeFindNodes(nnod, ie, xyz, grad);
// F I N D C O N F I G U R A T I O N
f1 = (fF8[2]*fF8[5]-fF8[1]*fF8[6]) / (fF8[2]+fF8[5]-fF8[1]-fF8[6]);
f2 = (fF8[2]*fF8[7]-fF8[3]*fF8[6]) / (fF8[2]+fF8[7]-fF8[3]-fF8[6]);
f3 = (fF8[2]*fF8[0]-fF8[1]*fF8[3]) / (fF8[2]+fF8[0]-fF8[1]-fF8[3]);
icase = 1;
if (f1>=0. && fF8[2] <0.) icase = icase + 1;
if (f1 <0. && fF8[2]>=0.) icase = icase + 1;
if (f2>=0. && fF8[2] <0.) icase = icase + 2;
if (f2 <0. && fF8[2]>=0.) icase = icase + 2;
if (f3>=0. && fF8[2] <0.) icase = icase + 4;
if (f3 <0. && fF8[2]>=0.) icase = icase + 4;
ntria = 5;
switch ((int)icase) {
case 1: goto L100;
case 2: goto L400;
case 3: goto L400;
case 4: goto L200;
case 5: goto L400;
case 6: goto L200;
case 7: goto L200;
case 8: goto L300;
}
L100:
ntria = 3;
goto L400;
// F I N D A D D I T I O N A L P O I N T
L200:
nnod = 10;
ntria = 9;
// Copy "it" into a 2D matrix to be passed to MarchingCubeMiddlePoint
for ( i=0; i<3 ; i++) {
for ( j=0; j<9 ; j++) {
it2[j][i] = it[icase-1][j][i];
}
}
MarchingCubeMiddlePoint(9, xyz, grad, it2, &xyz[nnod-1][0], &grad[nnod-1][0]);
goto L400;
// I S T H E R E S U R F A C E P E N E T R A T I O N ?
L300:
MarchingCubeSurfacePenetration(fF8[3], fF8[2], fF8[6], fF8[7],
fF8[0], fF8[1], fF8[5], fF8[4], irep);
if (irep != 2) goto L400;
ntria = 9;
icase = 9;
// S E T T R I A N G L E S
L400:
// Copy "it" into a 2D matrix to be passed to MarchingCubeSetTriangles
for ( i=0; i<3 ; i++) {
for ( j=0; j<9 ; j++) {
it2[j][i] = it[icase-1][j][i];
}
}
MarchingCubeSetTriangles(ntria, it2, itria);
}
//______________________________________________________________________________
void TPainter3dAlgorithms::MarchingCubeCase10(Int_t &nnod, Int_t &ntria,
Double_t xyz[52][3], Double_t grad[52][3], Int_t itria[48][3])
{
// Consider case No 10
//
// Input: see common HCMCUB
//
// Output: the same as for IHMCUB
Double_t f1, f2;
Int_t icase, irep;
static Int_t ie[8] = { 1,3,12,9, 5,7,11,10 };
static Int_t it[6][8][3] = {
{{1,2,-3}, {-1,3,4}, {5,6,-7}, {-5,7,8}, { 0,0,0}, { 0,0,0}, { 0,0,0}, { 0,0,0}},
{{ 9,1,2}, { 9,2,3}, { 9,3,4}, { 9,4,5}, { 9,5,6}, { 9,6,7}, { 9,7,8}, { 9,8,1}},
{{ 9,1,2}, { 9,4,1}, { 9,3,4}, { 9,6,3}, { 9,5,6}, { 9,8,5}, { 9,7,8}, { 9,2,7}},
{{1,2,-7}, {-1,7,8}, {5,6,-3}, {-5,3,4}, { 0,0,0}, { 0,0,0}, { 0,0,0}, { 0,0,0}},
{{1,2,-7}, {-1,7,8}, {2,3,-6}, {-2,6,7}, {3,4,-5}, {-3,5,6}, {4,1,-8}, {-4,8,5}},
{{1,2,-3}, {-1,3,4}, {2,7,-6}, {-2,6,3}, {7,8,-5}, {-7,5,6}, {8,1,-4}, {-8,4,5}}
};
Int_t it2[8][3], i, j;
// S E T N O D E S & N O R M A L E S
nnod = 8;
MarchingCubeFindNodes(nnod, ie, xyz, grad);
// F I N D C O N F I G U R A T I O N
f1 = (fF8[0]*fF8[5]-fF8[1]*fF8[4]) / (fF8[0]+fF8[5]-fF8[1]-fF8[4]);
f2 = (fF8[3]*fF8[6]-fF8[2]*fF8[7]) / (fF8[3]+fF8[6]-fF8[2]-fF8[5]);
icase = 1;
if (f1 >= 0.) icase = icase + 1;
if (f2 >= 0.) icase = icase + 2;
if (icase==1 || icase==4) goto L100;
// D I F F E R E N T T O P A N D B O T T O M
nnod = 9;
ntria = 8;
// Copy "it" into a 2D matrix to be passed to MarchingCubeMiddlePoint
for ( i=0; i<3 ; i++) {
for ( j=0; j<8 ; j++) {
it2[j][i] = it[icase-1][j][i];
}
}
MarchingCubeMiddlePoint(8, xyz, grad, it2, &xyz[nnod-1][0], &grad[nnod-1][0]);
goto L200;
// I S T H E R E S U R F A C E P E N E T R A T I O N ?
L100:
MarchingCubeSurfacePenetration(fF8[0], fF8[1], fF8[5], fF8[4],
fF8[3], fF8[2], fF8[6], fF8[7], irep);
ntria = 4;
if (irep == 0) goto L200;
// "B O T T L E N E C K"
ntria = 8;
if (icase == 1) icase = 5;
if (icase == 4) icase = 6;
// S E T T R I A N G L E S
L200:
// Copy "it" into a 2D matrix to be passed to MarchingCubeSetTriangles
for ( i=0; i<3 ; i++) {
for ( j=0; j<8 ; j++) {
it2[j][i] = it[icase-1][j][i];
}
}
MarchingCubeSetTriangles(ntria, it2, itria);
}
//______________________________________________________________________________
void TPainter3dAlgorithms::MarchingCubeCase12(Int_t &nnod, Int_t &ntria,
Double_t xyz[52][3], Double_t grad[52][3], Int_t itria[48][3])
{
// Consider case No 12
//
// Input: see common HCMCUB
//
// Output: the same as for IHMCUB
Double_t f1, f2;
Int_t icase, irep;
static Int_t ie[8] = { 3,12,4, 1,9,8,6,2 };
static Int_t it[6][8][3] = {
{{ 1,2,3}, {4,5,-6}, {-4,6,8}, { 6,7,8}, { 0,0,0}, { 0,0,0}, { 0,0,0}, { 0,0,0}},
{{-9,1,2}, {9,2,-3}, {-9,3,4}, {9,4,-5}, {-9,5,6}, {9,6,-7}, {-9,7,8}, {9,8,-1}},
{{9,1,-2}, {-9,2,6}, {9,6,-7}, {-9,7,8}, {9,8,-4}, {-9,4,5}, {9,5,-3}, {-9,3,1}},
{{ 3,4,5}, {1,2,-6}, {-1,6,8}, { 6,7,8}, { 0,0,0}, { 0,0,0}, { 0,0,0}, { 0,0,0}},
{{ 7,8,6}, {6,8,-1}, {-6,1,2}, {3,1,-8}, {-3,8,4}, { 3,4,5}, {3,5,-6}, {-3,6,2}},
{{ 7,8,6}, {6,8,-4}, {-6,4,5}, {3,4,-8}, {-3,8,1}, { 3,1,2}, {3,2,-6}, {-3,6,5}}
};
Int_t it2[8][3], i, j;
// S E T N O D E S & N O R M A L E S
nnod = 8;
MarchingCubeFindNodes(nnod, ie, xyz, grad);
// F I N D C O N F I G U R A T I O N
f1 = (fF8[0]*fF8[2]-fF8[1]*fF8[3]) / (fF8[0]+fF8[2]-fF8[1]-fF8[3]);
f2 = (fF8[0]*fF8[7]-fF8[3]*fF8[4]) / (fF8[0]+fF8[7]-fF8[3]-fF8[4]);
icase = 1;
if (f1 >= 0.) icase = icase + 1;
if (f2 >= 0.) icase = icase + 2;
if (icase==1 || icase==4) goto L100;
// F I N D A D D I T I O N A L P O I N T
nnod = 9;
ntria = 8;
// Copy "it" into a 2D matrix to be passed to MarchingCubeMiddlePoint
for ( i=0; i<3 ; i++) {
for ( j=0; j<8 ; j++) {
it2[j][i] = it[icase-1][j][i];
}
}
MarchingCubeMiddlePoint(8, xyz, grad, it2, &xyz[nnod-1][0], &grad[nnod-1][0]);
goto L200;
// I S T H E R E S U R F A C E P E N E T R A T I O N ?
L100:
MarchingCubeSurfacePenetration(fF8[0], fF8[1], fF8[2], fF8[3],
fF8[4], fF8[5], fF8[6], fF8[7], irep);
ntria = 4;
if (irep != 1) goto L200;
// "B O T T L E N E C K"
ntria = 8;
if (icase == 1) icase = 5;
if (icase == 4) icase = 6;
// S E T T R I A N G L E S
L200:
// Copy "it" into a 2D matrix to be passed to MarchingCubeSetTriangles
for ( i=0; i<3 ; i++) {
for ( j=0; j<8 ; j++) {
it2[j][i] = it[icase-1][j][i];
}
}
MarchingCubeSetTriangles(ntria, it2, itria);
}
//______________________________________________________________________________
void TPainter3dAlgorithms::MarchingCubeCase13(Int_t &nnod, Int_t &ntria,
Double_t xyz[52][3], Double_t grad[52][3], Int_t itria[48][3])
{
// Consider case No 13
//
// Input: see common HCMCUB
//
// Output: the same as for IHMCUB
Double_t ff[8];
Double_t f1, f2, f3, f4;
Int_t nr, nf, i, k, incr, n, kr, icase, irep;
static Int_t irota[12][8] = {
{1,2,3,4,5,6,7,8}, {1,5,6,2,4,8,7,3}, {1,4,8,5,2,3,7,6},
{3,7,8,4,2,6,5,1}, {3,2,6,7,4,1,5,8}, {3,4,1,2,7,8,5,6},
{6,7,3,2,5,8,4,1}, {6,5,8,7,2,1,4,3}, {6,2,1,5,7,3,4,8},
{8,4,3,7,5,1,2,6}, {8,5,1,4,7,6,2,3}, {8,7,6,5,4,3,2,1} };
static Int_t iwhat[8] = { 63,62,54,26,50,9,1,0 };
static Int_t ie[12] = { 1,2,3,4,5,6,7,8,9,10,11,12 };
static Int_t iface[6][4] = {
{1,2,3,4}, {5,6,7,8}, {1,2,6,5}, {2,6,7,3}, {4,3,7,8}, {1,5,8,4} };
static Int_t it1[4][3] = { {1,2,10}, {9,5,8}, {6,11,7}, {3,4,12} };
static Int_t it2[4][3] = { {5,6,10}, {1,4,9}, {2,11,3}, {7,8,12} };
static Int_t it3[6][3] = { {10,12,-3}, {-10,3,2}, {12,10,-1}, {-12,1,4},
{9,5,8}, {6,11,7} };
static Int_t it4[6][3] = { {11,9,-1}, {-11,1,2}, {9,11,-3}, {-9,3,4},
{5,6,10}, {7,8,12} };
static Int_t it5[10][3] = { {13,2,-11}, {-13,11,7}, {13,7,-6}, {-13,6,10},
{13,10,1}, {13,1,-4}, {-13,4,12}, {13,12,-3}, {-13,3,2}, {5,8,9} };
static Int_t it6[10][3] = { {13,2,-10}, {-13,10,5}, {13,5,-6}, {-13,6,11},
{13,11,3}, {13,3,-4}, {-13,4,9}, {13,9,-1}, {-13,1,2}, {12,7,8} };
static Int_t it7[12][3] = { {13,2,-11}, {-13,11,7}, {13,7,-6}, {-13,6,10},
{13,10,-5}, {-13,5,8}, {13,8,-9}, {-13,9,1},
{13,1,-4}, {-13,4,12}, {13,12,-3}, {-13,3,2} };
static Int_t it8[6][3] = { {3,8,12}, {3,-2,-8}, {-2,5,-8}, {2,10,-5},
{7,6,11}, {1,4,9} };
static Int_t it9[10][3] = { {7,12,-3}, {-7,3,11}, {11,3,2}, {6,11,-2}, {-6,2,10},
{6,10,5}, {7,6,-5}, {-7,5,8}, {7,8,12}, {1,4,9} };
static Int_t it10[10][3] = { {9,1,-10}, {-9,10,5}, {9,5,8}, {4,9,-8}, {-4,8,12},
{4,12,3}, {1,4,-3}, {-1,3,2}, {1,2,10}, {7,6,11} };
nnod = 0;
ntria = 0;
// F I N D C O N F I G U R A T I O N T Y P E
for ( nr=1 ; nr<=12 ; nr++ ) {
k = 0;
incr = 1;
for ( nf=1 ; nf<=6 ; nf++ ) {
f1 = fF8[irota[nr-1][iface[nf-1][0]-1]-1];
f2 = fF8[irota[nr-1][iface[nf-1][1]-1]-1];
f3 = fF8[irota[nr-1][iface[nf-1][2]-1]-1];
f4 = fF8[irota[nr-1][iface[nf-1][3]-1]-1];
if ((f1*f3-f2*f4)/(f1+f3-f2-f4) >= 0.) k = k + incr;
incr = incr + incr;
}
for ( i=1 ; i<=8 ; i++ ) {
if (k != iwhat[i-1]) continue;
icase = i;
kr = nr;
goto L200;
}
}
Error("MarchingCubeCase13", "configuration is not found");
return;
// R O T A T E C U B E
L200:
if (icase==1 || icase==8) goto L300;
for ( n=1 ; n<=8 ; n++) {
k = irota[kr-1][n-1];
ff[n-1] = fF8[k-1];
for ( i=1 ; i<=3 ; i++ ) {
xyz[n-1][i-1] = fP8[k-1][i-1];
grad[n-1][i-1] = fG8[k-1][i-1];
}
}
for ( n=1 ; n<=8 ; n++ ) {
fF8[n-1] = ff[n-1];
for ( i=1 ; i<=3 ; i++ ) {
fP8[n-1][i-1] = xyz[n-1][i-1];
fG8[n-1][i-1] = grad[n-1][i-1];
}
}
// S E T N O D E S & N O R M A L E S
L300:
nnod = 12;
MarchingCubeFindNodes(nnod, ie, xyz, grad);
// V A R I O U S C O N F I G U R A T I O N S
switch ((int)icase) {
case 1:
ntria = 4;
MarchingCubeSetTriangles(ntria, it1, itria);
return;
case 8:
ntria = 4;
MarchingCubeSetTriangles(ntria, it2, itria);
return;
case 2:
ntria = 6;
MarchingCubeSetTriangles(ntria, it3, itria);
return;
case 7:
ntria = 6;
MarchingCubeSetTriangles(ntria, it4, itria);
return;
case 3:
nnod = 13;
ntria = 10;
MarchingCubeMiddlePoint(9, xyz, grad, it5,
&xyz[nnod-1][0], &grad[nnod-1][0]);
MarchingCubeSetTriangles(ntria, it5, itria);
return;
case 6:
nnod = 13;
ntria = 10;
MarchingCubeMiddlePoint(9, xyz, grad, it6,
&xyz[nnod-1][0], &grad[nnod-1][0]);
MarchingCubeSetTriangles(ntria, it6, itria);
return;
case 5:
nnod = 13;
ntria = 12;
MarchingCubeMiddlePoint(12, xyz, grad, it7,
&xyz[nnod-1][0], &grad[nnod-1][0]);
MarchingCubeSetTriangles(ntria, it7, itria);
return;
// I S T H E R E S U R F A C E P E N E T R A T I O N ?
case 4:
MarchingCubeSurfacePenetration(fF8[2], fF8[3], fF8[0], fF8[1],
fF8[6], fF8[7], fF8[4], fF8[5], irep);
switch ((int)(irep+1)) {
case 1:
ntria = 6;
MarchingCubeSetTriangles(ntria, it8, itria);
return;
case 2:
ntria = 10;
MarchingCubeSetTriangles(ntria, it9, itria);
return;
case 3:
ntria = 10;
MarchingCubeSetTriangles(ntria, it10, itria);
}
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::MarchingCubeSetTriangles(Int_t ntria, Int_t it[][3],
Int_t itria[48][3])
{
// Set triangles (if parameter IALL=1, all edges will be visible)
//
// Input: NTRIA - number of triangles
// IT(3,*) - triangles
//
// Output: ITRIA(3,*) - triangles
Int_t n, i, k;
for ( n=1 ; n<=ntria ; n++ ) {
for ( i=1 ; i<=3 ; i++ ) {
k = it[n-1][i-1];
itria[n-1][i-1] = k;
}
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::MarchingCubeMiddlePoint(Int_t nnod, Double_t xyz[52][3],
Double_t grad[52][3],
Int_t it[][3], Double_t *pxyz,
Double_t *pgrad)
{
// Find middle point of a polygon
//
// Input: NNOD - number of nodes in the polygon
// XYZ(3,*) - node coordinates
// GRAD(3,*) - node normales
// IT(3,*) - division of the polygons into triangles
//
// Output: PXYZ(3) - middle point coordinates
// PGRAD(3) - middle point normale
Double_t p[3], g[3];
Int_t i, n, k;
for ( i=1 ; i<=3 ; i++ ) {
p[i-1] = 0.;
g[i-1] = 0.;
}
for ( n=1 ; n<=nnod ; n++ ) {
k = it[n-1][2];
if (k < 0) k =-k;
for ( i=1 ; i<=3 ; i++ ) {
p[i-1] = p[i-1] + xyz[k-1][i-1];
g[i-1] = g[i-1] + grad[k-1][i-1];
}
}
for ( i=1 ; i<=3 ; i++ ) {
pxyz[i-1] = p[i-1] / nnod;
pgrad[i-1] = g[i-1] / nnod;
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::MarchingCubeSurfacePenetration(Double_t a00, Double_t a10,
Double_t a11, Double_t a01,
Double_t b00, Double_t b10,
Double_t b11, Double_t b01,
Int_t &irep)
{
// Check for surface penetration ("bottle neck")
//
// Input: A00,A10,A11,A01 - vertex values for 1st face
// B00,B10,B11,B01 - vertex values for opposite face
//
// Output: IREP - 1,2 - there is surface penetration
// 0 - there is not surface penetration
Double_t a, b, c, d, s0, s1, s2;
Int_t iposa, iposb;
irep = 0;
a = (a11-a01)*(b00-b10) - (a00-a10)*(b11-b01);
if (a == 0.) return;
b = a01*(b00-b10)-(a11-a01)*b00-(a00-a10)*b01+a00*(b11-b01);
c = a00*b01 - a01*b00;
d = b*b-4*a*c;
if (d <= 0.) return;
d = TMath::Sqrt(d);
if (TMath::Abs(-b+d) > TMath::Abs(2*a)) return;
s1 = (-b+d) / (2*a);
if (s1<0. || s1>1.) return;
if (TMath::Abs(-b-d) > TMath::Abs(2*a)) return;
s2 = (-b-d) / (2*a);
if (s2<0. || s2>1.) return;
// C A S E N O 4 ?
iposa = 0;
if (a00 >= 0) iposa = iposa + 1;
if (a01 >= 0) iposa = iposa + 2;
if (a10 >= 0) iposa = iposa + 4;
if (a11 >= 0) iposa = iposa + 8;
if (iposa==6 || iposa==9) goto L100;
irep = 1;
return;
// N O T C A S E N O 4
L100:
s0 = (a00-a01) / (a00+a11-a10-a01);
if (s1>=s0 && s2=s0) return;
irep = 1;
if (s1 >= s0) irep = 2;
// C A S E S N O 10, 13 ?
iposb = 0;
if (b00 >= 0) iposb = iposb + 1;
if (b01 >= 0) iposb = iposb + 2;
if (b10 >= 0) iposb = iposb + 4;
if (b11 >= 0) iposb = iposb + 8;
if (iposb!=6 && iposb!=9) return;
s0 = (b00-b01) / (b00+b11-b10-b01);
if (iposa != iposb) goto L200;
// C A S E N O 10
if (irep==1 && s1>s0) return;
if (irep==2 && s1s0) return;
irep = 0;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::MarchingCubeFindNodes(Int_t nnod,
Int_t *ie, Double_t xyz[52][3],
Double_t grad[52][3])
{
// Find nodes and normales
//
// Input: NNOD - number of nodes
// IE(*) - edges which have section node
//
// Output: XYZ(3,*) - nodes
// GRAD(3,*) - node normales (not normalized)
Int_t n, k, i, n1, n2;
Double_t t;
static Int_t iedge[12][2] = {
{1,2}, {2,3}, {3,4}, {4,1}, {5,6}, {6,7}, {7,8}, {8,5}, {1,5}, {2,6}, {3,7}, {4,8} };
for ( n=1 ; n<=nnod ; n++ ) {
k = ie[n-1];
if (k < 0) k =-k;
n1 = iedge[k-1][0];
n2 = iedge[k-1][1];
t = fF8[n1-1] / (fF8[n1-1]-fF8[n2-1]);
for ( i=1 ; i<=3 ; i++ ) {
xyz[n-1][i-1] = (fP8[n2-1][i-1]-fP8[n1-1][i-1])*t + fP8[n1-1][i-1];
grad[n-1][i-1] = (fG8[n2-1][i-1]-fG8[n1-1][i-1])*t + fG8[n1-1][i-1];
}
}
}
//______________________________________________________________________________
void TPainter3dAlgorithms::ZDepth(Double_t xyz[52][3], Int_t &nface,
Int_t iface[48][3], Double_t dface[48][6],
Double_t abcd[48][4], Int_t *iorder)
{
// Z-depth algorithm for set of triangles
//
// Input: XYZ(3,*) - nodes
// NFACE - number of triangular faces
// IFACE(3,*) - faces (triangles)
//
// Arrays: DFACE(6,*) - array for min-max scopes
// ABCD(4,*) - array for face plane equations
//
// Output: IORDER(*) - face order
Int_t n, nf, i1, i2, i3, i, icur, k, itst, kface, kf, irep;
Int_t nn[3], kk[3];
Double_t wmin, wmax, a, b, c, q, zcur;
Double_t v[2][3], abcdn[4], abcdk[4];
// S E T I N I T I A L O R D E R
// I G N O R E V E R Y S M A L L F A C E S
// S E T M I N - M A X S C O P E S
// S E T F A C E P L A N E E Q U A T I O N S
nf = 0;
for ( n=1 ; n<=nface ; n++ ) {
i1 = TMath::Abs(iface[n-1][0]);
i2 = TMath::Abs(iface[n-1][1]);
i3 = TMath::Abs(iface[n-1][2]);
// A R E A T E S T
if (TMath::Abs(xyz[i2-1][0]-xyz[i1-1][0])<=kDel &&
TMath::Abs(xyz[i2-1][1]-xyz[i1-1][1])<=kDel &&
TMath::Abs(xyz[i2-1][2]-xyz[i1-1][2])<=kDel) continue;
if (TMath::Abs(xyz[i3-1][0]-xyz[i2-1][0])<=kDel &&
TMath::Abs(xyz[i3-1][1]-xyz[i2-1][1])<=kDel &&
TMath::Abs(xyz[i3-1][2]-xyz[i2-1][2])<=kDel) continue;
if (TMath::Abs(xyz[i1-1][0]-xyz[i3-1][0])<=kDel &&
TMath::Abs(xyz[i1-1][1]-xyz[i3-1][1])<=kDel &&
TMath::Abs(xyz[i1-1][2]-xyz[i3-1][2])<=kDel) continue;
// P R O J E C T I O N T E S T
if (TMath::Abs(xyz[i2-1][0]-xyz[i1-1][0])<=kDel &&
TMath::Abs(xyz[i2-1][1]-xyz[i1-1][1])<=kDel &&
TMath::Abs(xyz[i3-1][0]-xyz[i2-1][0])<=kDel &&
TMath::Abs(xyz[i3-1][1]-xyz[i2-1][1])<=kDel &&
TMath::Abs(xyz[i1-1][0]-xyz[i3-1][0])<=kDel &&
TMath::Abs(xyz[i1-1][1]-xyz[i3-1][1])<=kDel) continue;
nf = nf + 1;
iorder[nf-1] = n;
// F I N D M I N - M A X
for ( i=1 ; i<=3 ; i++ ) {
wmin = xyz[i1-1][i-1];
wmax = xyz[i1-1][i-1];
if (wmin > xyz[i2-1][i-1]) wmin = xyz[i2-1][i-1];
if (wmax < xyz[i2-1][i-1]) wmax = xyz[i2-1][i-1];
if (wmin > xyz[i3-1][i-1]) wmin = xyz[i3-1][i-1];
if (wmax < xyz[i3-1][i-1]) wmax = xyz[i3-1][i-1];
dface[n-1][i-1] = wmin;
dface[n-1][i+2] = wmax;
}
// F I N D F A C E E Q U A T I O N
for ( i=1 ; i<=3 ; i++ ) {
v[0][i-1] = xyz[i2-1][i-1] - xyz[i1-1][i-1];
v[1][i-1] = xyz[i3-1][i-1] - xyz[i2-1][i-1];
}
a = (v[0][1]*v[1][2] - v[0][2]*v[1][1]);
b = (v[0][2]*v[1][0] - v[0][0]*v[1][2]);
c = (v[0][0]*v[1][1] - v[0][1]*v[1][0]);
q = TMath::Sqrt(a*a+b*b+c*c);
if (c < 0.) q =-q;
a = a / q;
b = b / q;
c = c / q;
abcd[n-1][0] = a;
abcd[n-1][1] = b;
abcd[n-1][2] = c;
abcd[n-1][3] =-(a*xyz[i1-1][0] + b*xyz[i1-1][1] + c*xyz[i1-1][2]);
}
nface = nf;
if (nf <= 1) return;
// S O R T T R I A N G L E S A L O N G Z - M I N
for ( icur=2 ; icur<=nface ; icur++ ) {
k = iorder[icur-1];
zcur = dface[k-1][2];
for ( itst=icur-1 ; itst>=1 ; itst-- ) {
k = iorder[itst-1];
if (zcur < dface[k-1][2]) break;
k = iorder[itst-1];
iorder[itst-1] = iorder[itst];
iorder[itst] = k;
}
}
// Z - D E P T H A L G O R I T H M
kface = nface;
L300:
if (kface == 1) goto L900;
nf = iorder[kface-1];
if (nf < 0) nf =-nf;
abcdn[0] = abcd[nf-1][0];
abcdn[1] = abcd[nf-1][1];
abcdn[2] = abcd[nf-1][2];
abcdn[3] = abcd[nf-1][3];
nn[0] = TMath::Abs(iface[nf-1][0]);
nn[1] = TMath::Abs(iface[nf-1][1]);
nn[2] = TMath::Abs(iface[nf-1][2]);
// I N T E R N A L L O O P
for ( k=kface-1 ; k>=1 ; k-- ) {
kf = iorder[k-1];
if (kf < 0) kf =-kf;
if (dface[nf-1][5] > dface[kf-1][2]+kDel) goto L400;
if (iorder[k-1] > 0) goto L900;
goto L800;
// M I N - M A X T E S T
L400:
if (dface[kf-1][0] >= dface[nf-1][3]-kDel) goto L800;
if (dface[kf-1][3] <= dface[nf-1][0]+kDel) goto L800;
if (dface[kf-1][1] >= dface[nf-1][4]-kDel) goto L800;
if (dface[kf-1][4] <= dface[nf-1][1]+kDel) goto L800;
// K F B E F O R E N F ?
kk[0] = TMath::Abs(iface[kf-1][0]);
kk[1] = TMath::Abs(iface[kf-1][1]);
kk[2] = TMath::Abs(iface[kf-1][2]);
if (abcdn[0]*xyz[kk[0]-1][0]+abcdn[1]*xyz[kk[0]-1][1]+
abcdn[2]*xyz[kk[0]-1][2]+abcdn[3] < -kDel) goto L500;
if (abcdn[0]*xyz[kk[1]-1][0]+abcdn[1]*xyz[kk[1]-1][1]+
abcdn[2]*xyz[kk[1]-1][2]+abcdn[3] < -kDel) goto L500;
if (abcdn[0]*xyz[kk[2]-1][0]+abcdn[1]*xyz[kk[2]-1][1]+
abcdn[2]*xyz[kk[2]-1][2]+abcdn[3] < -kDel) goto L500;
goto L800;
// N F A F T E R K F ?
L500:
abcdk[0] = abcd[kf-1][0];
abcdk[1] = abcd[kf-1][1];
abcdk[2] = abcd[kf-1][2];
abcdk[3] = abcd[kf-1][3];
if (abcdk[0]*xyz[nn[0]-1][0]+abcdk[1]*xyz[nn[0]-1][1]+
abcdk[2]*xyz[nn[0]-1][2]+abcdk[3] > kDel) goto L600;
if (abcdk[0]*xyz[nn[1]-1][0]+abcdk[1]*xyz[nn[1]-1][1]+
abcdk[2]*xyz[nn[1]-1][2]+abcdk[3] > kDel) goto L600;
if (abcdk[0]*xyz[nn[2]-1][0]+abcdk[1]*xyz[nn[2]-1][1]+
abcdk[2]*xyz[nn[2]-1][2]+abcdk[3] > kDel) goto L600;
goto L800;
// E D G E B Y E D G E T E S T
// K F - E D G E S A G A I N S T N F
L600:
for ( i=1 ; i<=3 ; i++ ) {
i1 = kk[i-1];
i2 = kk[0];
if (i != 3) i2 = kk[i];
TestEdge(kDel, xyz, i1, i2, nn, abcdn, irep);
if ( irep<0 ) goto L700;
if ( irep==0 ) continue;
if ( irep>0 ) goto L800;
}
// N F - E D G E S A G A I N S T K F
for ( i=1 ; i<=3 ; i++ ) {
i1 = nn[i-1];
i2 = nn[0];
if (i != 3) i2 = nn[i];
TestEdge(kDel, xyz, i1, i2, kk, abcdk, irep);
if ( irep<0 ) goto L800;
if ( irep==0 ) continue;
if ( irep>0 ) goto L700;
}
goto L800;
// C H A N G E F A C E O R D E R
L700:
kf = iorder[k-1];
for ( i=k+1 ; i<=kface ; i++ ) {
iorder[i-2] = iorder[i-1];
}
iorder[kface-1] =-kf;
if (kf > 0) goto L300;
goto L900;
L800:
continue;
}
// N E X T F A C E
L900:
if (iorder[kface-1] < 0) iorder[kface-1] =-iorder[kface-1];
kface = kface - 1;
if (kface > 0) goto L300;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::TestEdge(Double_t del, Double_t xyz[52][3], Int_t i1, Int_t i2,
Int_t iface[3], Double_t abcd[4], Int_t &irep)
{
// Test edge against face (triangle)
//
// Input: DEL - precision
// XYZ(3,*) - nodes
// I1 - 1-st node of edge
// I2 - 2-nd node of edge
// IFACE(3) - triangular face
// ABCD(4) - face plane
//
// Output: IREP:-1 - edge under face
// 0 - no decision
// +1 - edge before face
Int_t k, k1, k2, ixy, i;
Double_t a, b, c, d1, d2, dd, xy, tmin, tmax, tmid, x, y, z;
Double_t d[3], delta[3], t[2];
irep = 0;
// F I N D I N T E R S E C T I O N P O I N T S
delta[0] = xyz[i2-1][0] - xyz[i1-1][0];
delta[1] = xyz[i2-1][1] - xyz[i1-1][1];
delta[2] = xyz[i2-1][2] - xyz[i1-1][2];
if (TMath::Abs(delta[0])<=del && TMath::Abs(delta[1])<=del) return;
ixy = 1;
if (TMath::Abs(delta[1]) > TMath::Abs(delta[0])) ixy = 2;
a = delta[1];
b =-delta[0];
c =-(a*xyz[i1-1][0] + b*xyz[i1-1][1]);
d[0] = a*xyz[iface[0]-1][0] + b*xyz[iface[0]-1][1] + c;
d[1] = a*xyz[iface[1]-1][0] + b*xyz[iface[1]-1][1] + c;
d[2] = a*xyz[iface[2]-1][0] + b*xyz[iface[2]-1][1] + c;
k = 0;
for ( i=1 ; i<=3 ; i++ ) {
k1 = i;
k2 = i + 1;
if (i == 3) k2 = 1;
if (d[k1-1]>=0. && d[k2-1]>=0.) continue;
if (d[k1-1] <0. && d[k2-1] <0.) continue;
d1 = d[k1-1] / (d[k1-1] - d[k2-1]);
d2 = d[k2-1] / (d[k1-1] - d[k2-1]);
xy = d1*xyz[iface[k2-1]-1][ixy-1] - d2*xyz[iface[k1-1]-1][ixy-1];
k = k + 1;
t[k-1] = (xy-xyz[i1-1][ixy-1]) / delta[ixy-1];
if (k == 2) goto L200;
}
return;
// C O M P A R E Z - D E P T H
L200:
tmin = TMath::Min(t[0],t[1]);
tmax = TMath::Max(t[0],t[1]);
if (tmin>1. || tmax<0) return;
if (tmin < 0.) tmin = 0.;
if (tmax > 1.) tmax = 1.;
tmid = (tmin + tmax) / 2.;
x = delta[0]*tmid + xyz[i1-1][0];
y = delta[1]*tmid + xyz[i1-1][1];
z = delta[2]*tmid + xyz[i1-1][2];
dd = abcd[0]*x + abcd[1]*y + abcd[2]*z + abcd[3];
if (dd > del) goto L997;
if (dd <-del) goto L998;
return;
L997:
irep =+1;
return;
L998:
irep =-1;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::IsoSurface (Int_t ns, Double_t *s, Int_t nx,
Int_t ny, Int_t nz,
Double_t *x, Double_t *y, Double_t *z,
const char *chopt)
{
// Draw set of isosurfaces for a scalar function defined on a grid.
//
// Input: NS - number of isosurfaces
// S(*) - isosurface values
// NX - number of slices along X
// NY - number of slices along Y
// NZ - number of slices along Z
// X(*) - slices along X
// Y(*) - slices along Y
// Z(*) - slices along Z
// F(NX,NY,NZ) - function values <- Not used, current histo used instead
//
// DRFACE(ICODES,XYZ,NP,IFACE,T) - routine for face drawing
// ICODES(1) - isosurface number
// ICODES(2) - isosurface number
// ICODES(3) - isosurface number
// NP - number of nodes in face
// IFACE(NP) - face
// T(NP) - additional function (lightness)
//
// CHOPT - options: 'BF' - from BACK to FRONT
// 'FB' - from FRONT to BACK
Double_t p[8][3], pf[8], pn[8][3];
Double_t p0[3], p1[3], p2[3], p3[3], t[3];
Double_t fsurf, w, d1, d2, df1, df2;
Int_t icodes[3];
Int_t i, i1, i2, j, ibase, nnod, knod, ntria, ktria, iopt, iready;
Int_t ixcrit, iycrit, izcrit, incrx, incry, incrz, incr;
Int_t ix, ix1=0, ix2=0, iy, iy1=0, iy2=0, iz, iz1=0, iz2=0, k, kx, ky, kz, isurf, nsurf;
Double_t xyz[kNmaxp][3], xyzn[kNmaxp][3], grad[kNmaxp][3];
Double_t dtria[kNmaxt][6], abcd[kNmaxt][4];
Int_t itria[kNmaxt][3], iorder[kNmaxt], iattr[kNmaxt];
static Int_t ind[8][3] = { { 0,0,0 }, { 1,0,0 }, { 1,0,1 }, { 0,0,1 },
{ 0,1,0 }, { 1,1,0 }, { 1,1,1 }, { 0,1,1 } };
for (i=0;iGetView();
if (!view) {
Error("ImplicitFunction", "no TView in current pad");
return;
}
nsurf = ns;
if (nsurf > kNiso) {
Warning("IsoSurface","Number of isosurfaces too large. Increase kNiso");
}
iopt = 2;
if (*chopt == 'B' || *chopt == 'b') iopt = 1;
// F I N D X - , Y - , Z - C R I T I C A L
// This logic works for parallel projection only.
// For central projection another logic should be implemented.
p0[0] = x[0];
p0[1] = y[0];
p0[2] = z[0];
view->WCtoNDC(p0, p0);
p1[0] = x[nx-1];
p1[1] = y[0];
p1[2] = z[0];
view->WCtoNDC(p1, p1);
p2[0] = x[0];
p2[1] = y[ny-1];
p2[2] = z[0];
view->WCtoNDC(p2, p2);
p3[0] = x[0];
p3[1] = y[0];
p3[2] = z[nz-1];
view->WCtoNDC(p3, p3);
ixcrit = nx;
iycrit = ny;
izcrit = nz;
if (p1[2] < p0[2]) ixcrit = 1;
if (p2[2] < p0[2]) iycrit = 1;
if (p3[2] < p0[2]) izcrit = 1;
// L O O P A L O N G G R I D
// This logic works for both (parallel & central) projections.
incrx = 1;
incry = 1;
incrz = 1;
L110:
if (incrz >= 0) {
if (iopt == 1) iz1 = 1;
if (iopt == 1) iz2 = izcrit-1;
if (iopt == 2) iz1 = izcrit;
if (iopt == 2) iz2 = nz - 1;
} else {
if (iopt == 1) iz1 = nz - 1;
if (iopt == 1) iz2 = izcrit;
if (iopt == 2) iz1 = izcrit-1;
if (iopt == 2) iz2 = 1;
}
for (iz = iz1; incrz < 0 ? iz >= iz2 : iz <= iz2; iz += incrz) {
L120:
if (incry >= 0) {
if (iopt == 1) iy1 = 1;
if (iopt == 1) iy2 = iycrit-1;
if (iopt == 2) iy1 = iycrit;
if (iopt == 2) iy2 = ny - 1;
} else {
if (iopt == 1) iy1 = ny - 1;
if (iopt == 1) iy2 = iycrit;
if (iopt == 2) iy1 = iycrit-1;
if (iopt == 2) iy2 = 1;
}
for (iy = iy1; incry < 0 ? iy >= iy2 : iy <= iy2; iy += incry) {
L130:
if (incrx >= 0) {
if (iopt == 1) ix1 = 1;
if (iopt == 1) ix2 = ixcrit-1;
if (iopt == 2) ix1 = ixcrit;
if (iopt == 2) ix2 = nx - 1;
} else {
if (iopt == 1) ix1 = nx - 1;
if (iopt == 1) ix2 = ixcrit;
if (iopt == 2) ix1 = ixcrit-1;
if (iopt == 2) ix2 = 1;
}
for (ix = ix1; incrx < 0 ? ix >= ix2 : ix <= ix2; ix += incrx) {
nnod = 0;
ntria = 0;
iready = 0;
for ( isurf=1 ; isurf<=nsurf ; isurf++ ) {
fsurf = s[isurf-1];
if (gCurrentHist->GetBinContent(ix, iy, iz) >= fsurf)
goto L210;
if (gCurrentHist->GetBinContent(ix+1,iy, iz) >= fsurf)
goto L220;
if (gCurrentHist->GetBinContent(ix, iy+1,iz) >= fsurf)
goto L220;
if (gCurrentHist->GetBinContent(ix+1,iy+1,iz) >= fsurf)
goto L220;
if (gCurrentHist->GetBinContent(ix, iy, iz+1) >= fsurf)
goto L220;
if (gCurrentHist->GetBinContent(ix+1,iy, iz+1) >= fsurf)
goto L220;
if (gCurrentHist->GetBinContent(ix, iy+1,iz+1) >= fsurf)
goto L220;
if (gCurrentHist->GetBinContent(ix+1,iy+1,iz+1) >= fsurf)
goto L220;
continue;
L210:
if (gCurrentHist->GetBinContent(ix+1,iy, iz) < fsurf)
goto L220;
if (gCurrentHist->GetBinContent(ix, iy+1,iz) < fsurf)
goto L220;
if (gCurrentHist->GetBinContent(ix+1,iy+1,iz) < fsurf)
goto L220;
if (gCurrentHist->GetBinContent(ix, iy, iz+1) < fsurf)
goto L220;
if (gCurrentHist->GetBinContent(ix+1,iy, iz+1) < fsurf)
goto L220;
if (gCurrentHist->GetBinContent(ix, iy+1,iz+1) < fsurf)
goto L220;
if (gCurrentHist->GetBinContent(ix+1,iy+1,iz+1) < fsurf)
goto L220;
continue;
// P R E P A R E C U B E ( P A R A L L E P I P E D )
L220:
if (iready !=0) goto L310;
iready = 1;
for ( i=1 ; i<=8 ; i++ ) {
kx = ix + ind[i-1][0];
ky = iy + ind[i-1][1];
kz = iz + ind[i-1][2];
p[i-1][0] = x[kx-1];
p[i-1][1] = y[ky-1];
p[i-1][2] = z[kz-1];
pf[i-1] = gCurrentHist->GetBinContent(kx,ky,kz);
// F I N D X - G R A D I E N T
if (kx == 1) {
pn[i-1][0] = (gCurrentHist->GetBinContent(2,ky,kz) -
gCurrentHist->GetBinContent(1,ky,kz)) /
(x[1]-x[0]);
} else if (kx == nx) {
pn[i-1][0] = (gCurrentHist->GetBinContent(kx,ky,kz) -
gCurrentHist->GetBinContent(kx-1,ky,kz)) /
(x[kx-1]-x[kx-2]);
} else {
d1 = x[kx-1] - x[kx-2];
d2 = x[kx] - x[kx-1];
if (d1 == d2) {
pn[i-1][0] = (gCurrentHist->GetBinContent(kx+1,ky,kz) -
gCurrentHist->GetBinContent(kx-1,ky,kz)) /
(d1+d1);
} else {
df1 = gCurrentHist->GetBinContent(kx,ky,kz) -
gCurrentHist->GetBinContent(kx-1,ky,kz);
df2 = gCurrentHist->GetBinContent(kx+1,ky,kz) -
gCurrentHist->GetBinContent(kx,ky,kz);
pn[i-1][0] = (df1*d2*d2+df2*d1*d1)/(d1*d2*d2+d2*d1*d1);
}
}
// F I N D Y - G R A D I E N T
if (ky == 1) {
pn[i-1][1] = (gCurrentHist->GetBinContent(kx,2,kz) -
gCurrentHist->GetBinContent(kx,1,kz)) /
(y[1]-y[0]);
} else if (ky == ny) {
pn[i-1][1] = (gCurrentHist->GetBinContent(kx,ky,kz) -
gCurrentHist->GetBinContent(kx,ky-1,kz)) /
(y[ky-1]-y[ky-2]);
} else {
d1 = y[ky-1] - y[ky-2];
d2 = y[ky] - y[ky-1];
if (d1 == d2) {
pn[i-1][1] = (gCurrentHist->GetBinContent(kx,ky+1,kz) -
gCurrentHist->GetBinContent(kx,ky-1,kz)) /
(d1+d1);
} else {
df1 = gCurrentHist->GetBinContent(kx,ky,kz) -
gCurrentHist->GetBinContent(kx,ky-1,kz);
df2 = gCurrentHist->GetBinContent(kx,ky+1,kz) -
gCurrentHist->GetBinContent(kx,ky,kz);
pn[i-1][1] = (df1*d2*d2+df2*d1*d1)/(d1*d2*d2+d2*d1*d1);
}
}
// F I N D Z - G R A D I E N T
if (kz == 1) {
pn[i-1][2] = (gCurrentHist->GetBinContent(kx,ky,2) -
gCurrentHist->GetBinContent(kx,ky,1)) /
(z[1]-z[0]);
} else if (kz == nz) {
pn[i-1][2] = (gCurrentHist->GetBinContent(kx,ky,kz) -
gCurrentHist->GetBinContent(kx,ky,kz-1)) /
(z[kz-1]-z[kz-2]);
} else {
d1 = z[kz-1] - z[kz-2];
d2 = z[kz] - z[kz-1];
if (d1 == d2) {
pn[i-1][2] = (gCurrentHist->GetBinContent(kx,ky,kz+1) -
gCurrentHist->GetBinContent(kx,ky,kz-1)) /
(d1+d1);
} else {
df1 = gCurrentHist->GetBinContent(kx,ky,kz) -
gCurrentHist->GetBinContent(kx,ky,kz-1);
df2 = gCurrentHist->GetBinContent(kx,ky,kz+1) -
gCurrentHist->GetBinContent(kx,ky,kz);
pn[i-1][2] = (df1*d2*d2+df2*d1*d1)/(d1*d2*d2+d2*d1*d1);
}
}
}
// F I N D S E T O F T R I A N G L E S
L310:
Double_t xyz_tmp[kNmaxp][3], grad_tmp[kNmaxp][3];
Int_t itria_tmp[kNmaxt][3], l;
MarchingCube(s[isurf-1], p, pf, pn, knod, ktria,
xyz_tmp, grad_tmp, itria_tmp);
for( l=0 ; lWCtoNDC(&xyz[i-1][0], &xyzn[i-1][0]);
Luminosity(&grad[i-1][0], w);
grad[i-1][0] = w;
}
ZDepth(xyzn, ntria, itria, dtria, abcd, (Int_t*)iorder);
if (ntria == 0) continue;
incr = 1;
if (iopt == 1) incr = -1;
i1 = 1;
if (incr == -1) i1 = ntria;
i2 = ntria - i1 + 1;
for (i = i1; incr < 0 ? i >= i2 : i <= i2; i += incr) {
k = iorder[i-1];
t[0] = grad[TMath::Abs(itria[k-1][0])-1][0];
t[1] = grad[TMath::Abs(itria[k-1][1])-1][0];
t[2] = grad[TMath::Abs(itria[k-1][2])-1][0];
icodes[0] = iattr[k-1];
icodes[1] = iattr[k-1];
icodes[2] = iattr[k-1];
DrawFaceGouraudShaded(icodes, xyz, 3, &itria[k-1][0], t);
}
}
incrx = -incrx;
if (incrx < 0) goto L130;
}
incry = -incry;
if (incry < 0) goto L120;
}
incrz = -incrz;
if (incrz < 0) goto L110;
}
//______________________________________________________________________________
void TPainter3dAlgorithms::DrawFaceGouraudShaded(Int_t *icodes,
Double_t xyz[][3],
Int_t np, Int_t *iface,
Double_t *t)
{
// Draw the faces for the Gouraud Shaded Iso surfaces
Int_t i, k, irep;
Double_t p3[12][3];
TView *view = 0;
if (gPad) view = gPad->GetView();
if (!view) {
Error("ImplicitFunction", "no TView in current pad");
return;
}
if (icodes[0]==1) Spectrum(fNcolor, fFmin, fFmax, fIc1, 1, irep);
if (icodes[0]==2) Spectrum(fNcolor, fFmin, fFmax, fIc2, 1, irep);
if (icodes[0]==3) Spectrum(fNcolor, fFmin, fFmax, fIc3, 1, irep);
for ( i=1 ; i<=np ; i++) {
k = iface[i-1];
if (k<0) k = -k;
view->WCtoNDC(&xyz[k-1][0], &p3[i-1][0]);
}
FillPolygon(np, (Double_t *)p3, (Double_t *)t);
}