#include "Math/GeneticMinimizer.h" #include "TMVA/GeneticAlgorithm.h" #include "TMVA/IFitterTarget.h" #include "Math/IFunction.h" #include "Math/GenAlgoOptions.h" #include "TError.h" #include namespace ROOT { namespace Math { // wrapper class for TMVA interface to evaluate objective function class MultiGenFunctionFitness : public TMVA::IFitterTarget { private: unsigned int fNCalls; unsigned int fNFree; const ROOT::Math::IMultiGenFunction& fFunc; std::vector fFixedParFlag; mutable std::vector fValues; public: MultiGenFunctionFitness(const ROOT::Math::IMultiGenFunction& function) : fNCalls(0), fFunc(function) { fNFree = fFunc.NDim(); } unsigned int NCalls() const { return fNCalls; } unsigned int NDims() const { return fNFree; } unsigned int NTotal() const { return fFunc.NDim(); } void FixParameter(unsigned int ipar, double value, bool fix = true) { if (fValues.size() != fFunc.NDim() ) { fValues.resize(fFunc.NDim() ); fFixedParFlag.resize(fFunc.NDim()); } if (ipar >= fValues.size() ) return; // first find if it has been already fixed fFixedParFlag[ipar] = fix; fValues[ipar] = value; // count number of fixed params for (unsigned int i = 0; i < fFixedParFlag.size(); ++i) if (!fFixedParFlag[i] ) fNFree++; } // transfrom from internal parameters (not fixed to external vector which include the fixed ones) const std::vector & Transform( const std::vector & factors) const { unsigned int n = fValues.size(); if (n == 0 || fNFree == n ) return factors; // in case of fixed parameters for (unsigned int i = 0, j = 0; i < n ; ++i) { if (!fFixedParFlag[i] ) { assert (j < fNFree); fValues[i] = factors[j]; j++; } } return fValues; } Double_t Evaluate(const std::vector & factors ) const { const std::vector & x = Transform( factors); return fFunc(&x[0]); } Double_t EstimatorFunction(std::vector & factors ){ fNCalls += 1; return Evaluate( factors); } }; GeneticMinimizerParameters::GeneticMinimizerParameters() { // constructor of parameters with default values fNsteps = 40; fPopSize =300; fCycles = 3; fSC_steps =10; fSC_rate =5; fSC_factor=0.95; fConvCrit =10.0 * ROOT::Math::MinimizerOptions::DefaultTolerance(); // default is 0.001 if (fConvCrit <=0 ) fConvCrit = 0.001; } GeneticMinimizer::GeneticMinimizer(int ): fFitness(0), fMinValue(0), fParameters(GeneticMinimizerParameters() ) { // check with default minimizer options ROOT::Math::IOptions * geneticOpt = ROOT::Math::MinimizerOptions::FindDefault("Genetic"); if (geneticOpt) { ROOT::Math::MinimizerOptions opt; // create using default options opt.SetExtraOptions(*geneticOpt); this->SetOptions(opt); } } GeneticMinimizer::~GeneticMinimizer() { if ( fFitness ) { delete fFitness; fFitness = 0; } } void GeneticMinimizer::Clear() { fRanges.clear(); fResult.clear(); if ( fFitness ) { delete fFitness; fFitness = 0; } } void GeneticMinimizer::SetFunction(const ROOT::Math::IMultiGenFunction & func) { Clear(); fFitness = new MultiGenFunctionFitness(func); fResult = std::vector(func.NDim() ); assert(fResult.size() == NDim() ); } bool GeneticMinimizer::SetLimitedVariable(unsigned int , const std::string & , double , double , double lower , double upper ) { fRanges.push_back( new TMVA::Interval(lower,upper) ); return true; } bool GeneticMinimizer::SetVariable(unsigned int, const std::string& name, double value, double step) { //It does nothing! As there is no variable if it has no limits! double lower = value - (50 * step); double upper = value + (50 * step); Info("GeneticMinimizer::SetVariable", "Variables should be limited - set automatic range to 50 times step size for %s : [%f, %f]", name.c_str(),lower,upper); fRanges.push_back( new TMVA::Interval(lower, upper ) ); return true; } bool GeneticMinimizer::SetFixedVariable(unsigned int par, const std::string& name, double value) { // set a fixed variable if (!fFitness) { Error("GeneticMinimizer::SetFixedVariable", "Function has not been set - cannot set fixed variables %s",name.c_str()); return false; } static_cast(fFitness)->FixParameter(par, value); return true; } void GeneticMinimizer::SetParameters(const GeneticMinimizerParameters & params ) { fParameters = params; } ROOT::Math::MinimizerOptions GeneticMinimizer::Options() const { ROOT::Math::MinimizerOptions opt; GetGeneticOptions(opt); return opt; } void GeneticMinimizer::GetGeneticOptions(ROOT::Math::MinimizerOptions & opt) const { // get the genetic options of the class and return them in the MinimizerOptions class opt.SetTolerance(fParameters.fConvCrit/10); // use a factor of 10 to have default as Minuit opt.SetPrintLevel(PrintLevel() ); opt.SetMaxFunctionCalls(MaxIterations()); // this is different than nsteps // use fixed or dammy value for the other options opt.SetMinimizerType("Genetic"); opt.SetMaxFunctionCalls(0); opt.SetStrategy(-1); opt.SetErrorDef(0); opt.SetPrecision(0); opt.SetMinimizerAlgorithm(""); ROOT::Math::GenAlgoOptions geneticOpt; geneticOpt.SetValue("PopSize",fParameters.fPopSize); geneticOpt.SetValue("Steps",fParameters.fNsteps); geneticOpt.SetValue("Cycles",fParameters.fCycles); geneticOpt.SetValue("SC_steps",fParameters.fSC_steps); geneticOpt.SetValue("SC_rate",fParameters.fSC_rate); geneticOpt.SetValue("SC_factor",fParameters.fSC_factor); geneticOpt.SetValue("ConvCrit",fParameters.fConvCrit); opt.SetExtraOptions(geneticOpt); } void GeneticMinimizer::SetOptions(const ROOT::Math::MinimizerOptions & opt) { SetTolerance(opt.Tolerance() ); SetPrintLevel(opt.PrintLevel() ); //SetMaxFunctionCalls(opt.MaxFunctionCalls() ); SetMaxIterations(opt.MaxIterations() ); fParameters.fConvCrit = 10.*opt.Tolerance(); // use a factor of 10 to have default as Minuit // set genetic parameter from minimizer options ROOT::Math::IOptions * geneticOpt = opt.ExtraOptions(); if (!geneticOpt) { Warning("GeneticMinimizer::SetOptions", "No specific genetic minimizer options have been set"); return; } // if options are not existing values will not be set geneticOpt->GetValue("PopSize",fParameters.fPopSize); geneticOpt->GetValue("Steps",fParameters.fNsteps); geneticOpt->GetValue("Cycles",fParameters.fCycles); geneticOpt->GetValue("SC_steps",fParameters.fSC_steps); geneticOpt->GetValue("SC_rate",fParameters.fSC_rate); geneticOpt->GetValue("SC_factor",fParameters.fSC_factor); geneticOpt->GetValue("ConvCrit",fParameters.fConvCrit); // use same of options in base class int maxiter = MaxIterations(); if ( maxiter > 0 && maxiter < fParameters.fNsteps ) { Warning("GeneticMinimizer::SetOptions", "max iterations smaller than Steps - set equal to steps %d",fParameters.fNsteps); SetMaxIterations(fParameters.fNsteps); } } bool GeneticMinimizer::Minimize() { if (!fFitness) { Error("GeneticMinimizer::Minimize","Fitness function has not been set"); return false; } TMVA::GeneticAlgorithm mg( *fFitness, fParameters.fPopSize, fRanges ); if (PrintLevel() > 0) { Info("GeneticMinimizer::Minimize","Start iterating - max iterations = %d , conv criteria (tolerance) = %e ", MaxIterations() , fParameters.fConvCrit ); } fStatus = 0; unsigned int niter = 0; do { mg.Init(); mg.CalculateFitness(); // Just for debugging options //mg.GetGeneticPopulation().Print(0); mg.GetGeneticPopulation().TrimPopulation(); mg.SpreadControl( fParameters.fSC_steps, fParameters.fSC_rate, fParameters.fSC_factor ); if (PrintLevel() > 2) { std::cout << "New Iteration " << niter << " with parameter values :" << std::endl; TMVA::GeneticGenes* genes = mg.GetGeneticPopulation().GetGenes( 0 ); if (genes) { std::vector gvec; gvec = genes->GetFactors(); for (unsigned int i = 0; i < gvec.size(); ++i) { std::cout << gvec[i] << " "; } std::cout << std::endl; std::cout << "\tFitness function value = " << static_cast(fFitness)->Evaluate(gvec) << std::endl; } } niter++; if ( niter > MaxIterations() && MaxIterations() > 0) { if (PrintLevel() > 0) { Info("GeneticMinimizer::Minimize","Max number of iterations %d reached - stop iterating",MaxIterations()); } fStatus = 1; break; } } while (!mg.HasConverged( fParameters.fNsteps, fParameters.fConvCrit )); // converged if: fitness-improvement < CONVCRIT within the last CONVSTEPS loops TMVA::GeneticGenes* genes = mg.GetGeneticPopulation().GetGenes( 0 ); std::vector gvec; gvec = genes->GetFactors(); // transform correctly gvec on fresult in case there are fixed parameters const std::vector & transVec = static_cast(fFitness)->Transform(gvec); std::copy(transVec.begin(), transVec.end(), fResult.begin() ); fMinValue = static_cast(fFitness)->Evaluate(gvec); if (PrintLevel() > 0) { if (PrintLevel() > 2) std::cout << std::endl; std::cout << "Finished Iteration (niter = " << niter << " with fitness function value = " << MinValue() << std::endl; for (unsigned int i = 0; i < fResult.size(); ++i) { std::cout << " Parameter-" << i << "\t=\t" << fResult[i] << std::endl; } } return true; } double GeneticMinimizer::MinValue() const { return (fFitness) ? fMinValue : 0; } const double * GeneticMinimizer::X() const { return (fFitness) ? &fResult[0] : 0; } unsigned int GeneticMinimizer::NCalls() const { if ( fFitness ) return static_cast(fFitness)->NCalls(); else return 0; } unsigned int GeneticMinimizer::NDim() const { if ( fFitness ) return static_cast(fFitness)->NTotal(); else return 0; } unsigned int GeneticMinimizer::NFree() const { if ( fFitness ) return static_cast(fFitness)->NDims(); else return 0; } // Functions we don't need... const double * GeneticMinimizer::MinGradient() const { return 0; } bool GeneticMinimizer::ProvidesError() const { return false; } const double * GeneticMinimizer::Errors() const { return 0; } double GeneticMinimizer::Edm() const { return 0; } double GeneticMinimizer::CovMatrix(unsigned int, unsigned int) const { return 0; } } }