// @(#)root/mathcore:$Id$ // Authors: W. Brown, M. Fischler, L. Moneta 2005 /********************************************************************** * * * Copyright (c) 2005 , LCG ROOT MathLib Team and * * * * * **********************************************************************/ // Header file for class Cylindrica3D // // Created by: Lorenzo Moneta at Tue Dec 06 2005 // // #ifndef ROOT_Math_GenVector_Cylindrical3D #define ROOT_Math_GenVector_Cylindrical3D 1 #ifndef ROOT_Math_Math #include "Math/Math.h" #endif #ifndef ROOT_Math_GenVector_eta #include "Math/GenVector/eta.h" #endif #include namespace ROOT { namespace Math { //__________________________________________________________________________________________ /** Class describing a cylindrical coordinate system based on rho, z and phi. The base coordinates are rho (transverse component) , z and phi Phi is restricted to be in the range [-PI,PI) @ingroup GenVector */ template class Cylindrical3D { public : typedef T Scalar; /** Default constructor with rho=z=phi=0 */ Cylindrical3D() : fRho(0), fZ(0), fPhi(0) { } /** Construct from rho eta and phi values */ Cylindrical3D(Scalar rho, Scalar zz, Scalar phi) : fRho(rho), fZ(zz), fPhi(phi) { Restrict(); } /** Construct from any Vector or coordinate system implementing Rho(), Z() and Phi() */ template explicit Cylindrical3D( const CoordSystem & v ) : fRho( v.Rho() ), fZ( v.Z() ), fPhi( v.Phi() ) { Restrict(); } // for g++ 3.2 and 3.4 on 32 bits found that the compiler generated copy ctor and assignment are much slower // re-implement them ( there is no no need to have them with g++4) /** copy constructor */ Cylindrical3D(const Cylindrical3D & v) : fRho(v.Rho() ), fZ(v.Z() ), fPhi(v.Phi() ) { } /** assignment operator */ Cylindrical3D & operator= (const Cylindrical3D & v) { fRho = v.Rho(); fZ = v.Z(); fPhi = v.Phi(); return *this; } /** Set internal data based on an array of 3 Scalar numbers ( rho, z , phi) */ void SetCoordinates( const Scalar src[] ) { fRho=src[0]; fZ=src[1]; fPhi=src[2]; Restrict(); } /** get internal data into an array of 3 Scalar numbers ( rho, z , phi) */ void GetCoordinates( Scalar dest[] ) const { dest[0] = fRho; dest[1] = fZ; dest[2] = fPhi; } /** Set internal data based on 3 Scalar numbers ( rho, z , phi) */ void SetCoordinates(Scalar rho, Scalar zz, Scalar phi) { fRho=rho; fZ=zz; fPhi=phi; Restrict(); } /** get internal data into 3 Scalar numbers ( rho, z , phi) */ void GetCoordinates(Scalar& rho, Scalar& zz, Scalar& phi) const {rho=fRho; zz=fZ; phi=fPhi;} private: inline static Scalar pi() { return M_PI; } inline void Restrict() { if ( fPhi <= -pi() || fPhi > pi() ) fPhi = fPhi - std::floor( fPhi/(2*pi()) +.5 ) * 2*pi(); return; } public: // accessors Scalar Rho() const { return fRho; } Scalar Z() const { return fZ; } Scalar Phi() const { return fPhi; } Scalar X() const { return fRho*std::cos(fPhi); } Scalar Y() const { return fRho*std::sin(fPhi); } Scalar Mag2() const { return fRho*fRho + fZ*fZ; } Scalar R() const { return std::sqrt( Mag2()); } Scalar Perp2() const { return fRho*fRho; } Scalar Theta() const { return (fRho==0 && fZ==0 ) ? 0 : atan2(fRho,fZ); } // pseudorapidity - use same implementation as in Cartesian3D Scalar Eta() const { return Impl::Eta_FromRhoZ( fRho, fZ); } // setters (only for data members) /** set the rho coordinate value keeping z and phi constant */ void SetRho(T rho) { fRho = rho; } /** set the z coordinate value keeping rho and phi constant */ void SetZ(T zz) { fZ = zz; } /** set the phi coordinate value keeping rho and z constant */ void SetPhi(T phi) { fPhi = phi; Restrict(); } /** set all values using cartesian coordinates */ void SetXYZ(Scalar x, Scalar y, Scalar z); /** scale by a scalar quantity a -- for cylindrical coords only rho and z change */ void Scale (T a) { if (a < 0) { Negate(); a = -a; } fRho *= a; fZ *= a; } /** negate the vector */ void Negate ( ) { fPhi = ( fPhi > 0 ? fPhi - pi() : fPhi + pi() ); fZ = -fZ; } // assignment operators /** generic assignment operator from any coordinate system implementing Rho(), Z() and Phi() */ template Cylindrical3D & operator= ( const CoordSystem & c ) { fRho = c.Rho(); fZ = c.Z(); fPhi = c.Phi(); return *this; } /** Exact component-by-component equality */ bool operator==(const Cylindrical3D & rhs) const { return fRho == rhs.fRho && fZ == rhs.fZ && fPhi == rhs.fPhi; } bool operator!= (const Cylindrical3D & rhs) const {return !(operator==(rhs));} // ============= Compatibility section ================== // The following make this coordinate system look enough like a CLHEP // vector that an assignment member template can work with either T x() const { return X();} T y() const { return Y();} T z() const { return Z(); } // ============= Specializations for improved speed ================== // (none) #if defined(__MAKECINT__) || defined(G__DICTIONARY) // ====== Set member functions for coordinates in other systems ======= void SetX(Scalar x); void SetY(Scalar y); void SetEta(Scalar eta); void SetR(Scalar r); void SetTheta(Scalar theta); #endif private: T fRho; T fZ; T fPhi; }; } // end namespace Math } // end namespace ROOT // move implementations here to avoid circle dependencies #ifndef ROOT_Math_GenVector_Cartesian3D #include "Math/GenVector/Cartesian3D.h" #endif #if defined(__MAKECINT__) || defined(G__DICTIONARY) #ifndef ROOT_Math_GenVector_GenVector_exception #include "Math/GenVector/GenVector_exception.h" #endif #ifndef ROOT_Math_GenVector_CylindricalEta3D #include "Math/GenVector/CylindricalEta3D.h" #endif #ifndef ROOT_Math_GenVector_Polar3D #include "Math/GenVector/Polar3D.h" #endif #endif namespace ROOT { namespace Math { template void Cylindrical3D::SetXYZ(Scalar xx, Scalar yy, Scalar zz) { *this = Cartesian3D(xx, yy, zz); } #if defined(__MAKECINT__) || defined(G__DICTIONARY) // ====== Set member functions for coordinates in other systems ======= template void Cylindrical3D::SetX(Scalar xx) { GenVector_exception e("Cylindrical3D::SetX() is not supposed to be called"); throw e; Cartesian3D v(*this); v.SetX(xx); *this = Cylindrical3D(v); } template void Cylindrical3D::SetY(Scalar yy) { GenVector_exception e("Cylindrical3D::SetY() is not supposed to be called"); throw e; Cartesian3D v(*this); v.SetY(yy); *this = Cylindrical3D(v); } template void Cylindrical3D::SetR(Scalar r) { GenVector_exception e("Cylindrical3D::SetR() is not supposed to be called"); throw e; Polar3D v(*this); v.SetR(r); *this = Cylindrical3D(v); } template void Cylindrical3D::SetTheta(Scalar theta) { GenVector_exception e("Cylindrical3D::SetTheta() is not supposed to be called"); throw e; Polar3D v(*this); v.SetTheta(theta); *this = Cylindrical3D(v); } template void Cylindrical3D::SetEta(Scalar eta) { GenVector_exception e("Cylindrical3D::SetEta() is not supposed to be called"); throw e; CylindricalEta3D v(*this); v.SetEta(eta); *this = Cylindrical3D(v); } #endif } // end namespace Math } // end namespace ROOT #endif /* ROOT_Math_GenVector_Cylindrical3D */