// @(#)root/mathcore:$Id$ // Authors: M. Fischler 2005 /********************************************************************** * * * Copyright (c) 2005 , LCG ROOT FNAL MathLib Team * * * * * **********************************************************************/ // Header file for class BoostX, a 4x4 symmetric matrix representation of // an axial Lorentz transformation // // Created by: Mark Fischler Mon Nov 1 2005 // #include "Math/GenVector/BoostX.h" #include "Math/GenVector/LorentzVector.h" #include "Math/GenVector/PxPyPzE4D.h" #include "Math/GenVector/DisplacementVector3D.h" #include "Math/GenVector/Cartesian3D.h" #include "Math/GenVector/GenVector_exception.h" #include #include namespace ROOT { namespace Math { BoostX::BoostX() : fBeta(0.0), fGamma(1.0) {} void BoostX::SetComponents (Scalar bx ) { // set component Scalar bp2 = bx*bx; if (bp2 >= 1) { GenVector::Throw ( "Beta Vector supplied to set BoostX represents speed >= c"); return; } fBeta = bx; fGamma = 1.0 / std::sqrt(1.0 - bp2); } void BoostX::GetComponents (Scalar& bx) const { // get component bx = fBeta; } DisplacementVector3D< Cartesian3D > BoostX::BetaVector() const { // return beta vector return DisplacementVector3D< Cartesian3D > ( fBeta, 0.0, 0.0 ); } void BoostX::GetLorentzRotation (Scalar r[]) const { // get corresponding LorentzRotation r[kLXX] = fGamma; r[kLXY] = 0.0; r[kLXZ] = 0.0; r[kLXT] = fGamma*fBeta; r[kLYX] = 0.0; r[kLYY] = 1.0; r[kLYZ] = 0.0; r[kLYT] = 0.0; r[kLZX] = 0.0; r[kLZY] = 0.0; r[kLZZ] = 1.0; r[kLZT] = 0.0; r[kLTX] = fGamma*fBeta; r[kLTY] = 0.0; r[kLTZ] = 0.0; r[kLTT] = fGamma; } void BoostX::Rectify() { // Assuming the representation of this is close to a true Lorentz Rotation, // but may have drifted due to round-off error from many operations, // this forms an "exact" orthosymplectic matrix for the Lorentz Rotation // again. if (fGamma <= 0) { GenVector::Throw ( "Attempt to rectify a boost with non-positive gamma"); return; } Scalar beta = fBeta; if ( beta >= 1 ) { beta /= ( beta * ( 1.0 + 1.0e-16 ) ); } SetComponents ( beta ); } LorentzVector< PxPyPzE4D > BoostX::operator() (const LorentzVector< PxPyPzE4D > & v) const { // apply boost to a LV Scalar x = v.Px(); Scalar t = v.E(); return LorentzVector< PxPyPzE4D > ( fGamma*x + fGamma*fBeta*t , v.Py() , v.Pz() , fGamma*fBeta*x + fGamma*t ); } void BoostX::Invert() { // invert fBeta = -fBeta; } BoostX BoostX::Inverse() const { // return an inverse boostX BoostX tmp(*this); tmp.Invert(); return tmp; } // ========== I/O ===================== std::ostream & operator<< (std::ostream & os, const BoostX & b) { os << " BoostX( beta: " << b.Beta() << ", gamma: " << b.Gamma() << " ) "; return os; } } //namespace Math } //namespace ROOT