// @(#)root/mathcore:$Id$ // Authors: W. Brown, M. Fischler, L. Moneta 2005 /********************************************************************** * * * Copyright (c) 2005 , LCG ROOT FNAL MathLib Team * * * * * **********************************************************************/ // Header file for class LorentzRotation, a 4x4 matrix representation of // a general Lorentz transformation // // Created by: Mark Fischler Mon Aug 8 2005 // #include "Math/GenVector/GenVectorIO.h" #include "Math/GenVector/LorentzRotation.h" #include "Math/GenVector/LorentzVector.h" #include "Math/GenVector/PxPyPzE4D.h" #include "Math/GenVector/GenVector_exception.h" #include #include #include "Math/GenVector/Rotation3D.h" #include "Math/GenVector/RotationX.h" #include "Math/GenVector/RotationY.h" #include "Math/GenVector/RotationZ.h" namespace ROOT { namespace Math { LorentzRotation::LorentzRotation() { // constructor of an identity LR fM[kXX] = 1.0; fM[kXY] = 0.0; fM[kXZ] = 0.0; fM[kXT] = 0.0; fM[kYX] = 0.0; fM[kYY] = 1.0; fM[kYZ] = 0.0; fM[kYT] = 0.0; fM[kZX] = 0.0; fM[kZY] = 0.0; fM[kZZ] = 1.0; fM[kZT] = 0.0; fM[kTX] = 0.0; fM[kTY] = 0.0; fM[kTZ] = 0.0; fM[kTT] = 1.0; } LorentzRotation::LorentzRotation(Rotation3D const & r) { // construct from Rotation3D r.GetComponents ( fM[kXX], fM[kXY], fM[kXZ], fM[kYX], fM[kYY], fM[kYZ], fM[kZX], fM[kZY], fM[kZZ] ); fM[kXT] = 0.0; fM[kYT] = 0.0; fM[kZT] = 0.0; fM[kTX] = 0.0; fM[kTY] = 0.0; fM[kTZ] = 0.0; fM[kTT] = 1.0; } LorentzRotation::LorentzRotation(AxisAngle const & a) { // construct from AxisAngle const Rotation3D r(a); r.GetComponents ( fM[kXX], fM[kXY], fM[kXZ], fM[kYX], fM[kYY], fM[kYZ], fM[kZX], fM[kZY], fM[kZZ] ); fM[kXT] = 0.0; fM[kYT] = 0.0; fM[kZT] = 0.0; fM[kTX] = 0.0; fM[kTY] = 0.0; fM[kTZ] = 0.0; fM[kTT] = 1.0; } LorentzRotation::LorentzRotation(EulerAngles const & e) { // construct from EulerAngles const Rotation3D r(e); r.GetComponents ( fM[kXX], fM[kXY], fM[kXZ], fM[kYX], fM[kYY], fM[kYZ], fM[kZX], fM[kZY], fM[kZZ] ); fM[kXT] = 0.0; fM[kYT] = 0.0; fM[kZT] = 0.0; fM[kTX] = 0.0; fM[kTY] = 0.0; fM[kTZ] = 0.0; fM[kTT] = 1.0; } LorentzRotation::LorentzRotation(Quaternion const & q) { // construct from Quaternion const Rotation3D r(q); r.GetComponents ( fM[kXX], fM[kXY], fM[kXZ], fM[kYX], fM[kYY], fM[kYZ], fM[kZX], fM[kZY], fM[kZZ] ); fM[kXT] = 0.0; fM[kYT] = 0.0; fM[kZT] = 0.0; fM[kTX] = 0.0; fM[kTY] = 0.0; fM[kTZ] = 0.0; fM[kTT] = 1.0; } LorentzRotation::LorentzRotation(RotationX const & r) { // construct from RotationX Scalar s = r.SinAngle(); Scalar c = r.CosAngle(); fM[kXX] = 1.0; fM[kXY] = 0.0; fM[kXZ] = 0.0; fM[kXT] = 0.0; fM[kYX] = 0.0; fM[kYY] = c ; fM[kYZ] = -s ; fM[kYT] = 0.0; fM[kZX] = 0.0; fM[kZY] = s ; fM[kZZ] = c ; fM[kZT] = 0.0; fM[kTX] = 0.0; fM[kTY] = 0.0; fM[kTZ] = 0.0; fM[kTT] = 1.0; } LorentzRotation::LorentzRotation(RotationY const & r) { // construct from RotationY Scalar s = r.SinAngle(); Scalar c = r.CosAngle(); fM[kXX] = c ; fM[kXY] = 0.0; fM[kXZ] = s ; fM[kXT] = 0.0; fM[kYX] = 0.0; fM[kYY] = 1.0; fM[kYZ] = 0.0; fM[kYT] = 0.0; fM[kZX] = -s ; fM[kZY] = 0.0; fM[kZZ] = c ; fM[kZT] = 0.0; fM[kTX] = 0.0; fM[kTY] = 0.0; fM[kTZ] = 0.0; fM[kTT] = 1.0; } LorentzRotation::LorentzRotation(RotationZ const & r) { // construct from RotationX Scalar s = r.SinAngle(); Scalar c = r.CosAngle(); fM[kXX] = c ; fM[kXY] = -s ; fM[kXZ] = 0.0; fM[kXT] = 0.0; fM[kYX] = s ; fM[kYY] = c ; fM[kYZ] = 0.0; fM[kYT] = 0.0; fM[kZX] = 0.0; fM[kZY] = 0.0; fM[kZZ] = 1.0; fM[kZT] = 0.0; fM[kTX] = 0.0; fM[kTY] = 0.0; fM[kTZ] = 0.0; fM[kTT] = 1.0; } void LorentzRotation::Rectify() { // Assuming the representation of this is close to a true Lorentz Rotation, // but may have drifted due to round-off error from many operations, // this forms an "exact" orthosymplectic matrix for the Lorentz Rotation // again. typedef LorentzVector< PxPyPzE4D > FourVector; if (fM[kTT] <= 0) { GenVector::Throw ( "LorentzRotation:Rectify(): Non-positive TT component - cannot rectify"); return; } FourVector t ( fM[kTX], fM[kTY], fM[kTZ], fM[kTT] ); Scalar m2 = t.M2(); if ( m2 <= 0 ) { GenVector::Throw ( "LorentzRotation:Rectify(): Non-timelike time row - cannot rectify"); return; } t /= std::sqrt(m2); FourVector z ( fM[kZX], fM[kZY], fM[kZZ], fM[kZT] ); z = z - z.Dot(t)*t; m2 = z.M2(); if ( m2 >= 0 ) { GenVector::Throw ( "LorentzRotation:Rectify(): Non-spacelike Z row projection - " "cannot rectify"); return; } z /= std::sqrt(-m2); FourVector y ( fM[kYX], fM[kYY], fM[kYZ], fM[kYT] ); y = y - y.Dot(t)*t - y.Dot(z)*z; m2 = y.M2(); if ( m2 >= 0 ) { GenVector::Throw ( "LorentzRotation:Rectify(): Non-spacelike Y row projection - " "cannot rectify"); return; } y /= std::sqrt(-m2); FourVector x ( fM[kXX], fM[kXY], fM[kXZ], fM[kXT] ); x = x - x.Dot(t)*t - x.Dot(z)*z - x.Dot(y)*y; m2 = x.M2(); if ( m2 >= 0 ) { GenVector::Throw ( "LorentzRotation:Rectify(): Non-spacelike X row projection - " "cannot rectify"); return; } x /= std::sqrt(-m2); } void LorentzRotation::Invert() { // invert modifying current content Scalar temp; temp = fM[kXY]; fM[kXY] = fM[kYX]; fM[kYX] = temp; temp = fM[kXZ]; fM[kXZ] = fM[kZX]; fM[kZX] = temp; temp = fM[kYZ]; fM[kYZ] = fM[kZY]; fM[kZY] = temp; temp = fM[kXT]; fM[kXT] = -fM[kTX]; fM[kTX] = -temp; temp = fM[kYT]; fM[kYT] = -fM[kTY]; fM[kTY] = -temp; temp = fM[kZT]; fM[kZT] = -fM[kTZ]; fM[kTZ] = -temp; } LorentzRotation LorentzRotation::Inverse() const { // return an inverse LR return LorentzRotation ( fM[kXX], fM[kYX], fM[kZX], -fM[kTX] , fM[kXY], fM[kYY], fM[kZY], -fM[kTY] , fM[kXZ], fM[kYZ], fM[kZZ], -fM[kTZ] , -fM[kXT], -fM[kYT], -fM[kZT], fM[kTT] ); } LorentzRotation LorentzRotation::operator * (const LorentzRotation & r) const { // combination with another LR return LorentzRotation ( fM[kXX]*r.fM[kXX] + fM[kXY]*r.fM[kYX] + fM[kXZ]*r.fM[kZX] + fM[kXT]*r.fM[kTX] , fM[kXX]*r.fM[kXY] + fM[kXY]*r.fM[kYY] + fM[kXZ]*r.fM[kZY] + fM[kXT]*r.fM[kTY] , fM[kXX]*r.fM[kXZ] + fM[kXY]*r.fM[kYZ] + fM[kXZ]*r.fM[kZZ] + fM[kXT]*r.fM[kTZ] , fM[kXX]*r.fM[kXT] + fM[kXY]*r.fM[kYT] + fM[kXZ]*r.fM[kZT] + fM[kXT]*r.fM[kTT] , fM[kYX]*r.fM[kXX] + fM[kYY]*r.fM[kYX] + fM[kYZ]*r.fM[kZX] + fM[kYT]*r.fM[kTX] , fM[kYX]*r.fM[kXY] + fM[kYY]*r.fM[kYY] + fM[kYZ]*r.fM[kZY] + fM[kYT]*r.fM[kTY] , fM[kYX]*r.fM[kXZ] + fM[kYY]*r.fM[kYZ] + fM[kYZ]*r.fM[kZZ] + fM[kYT]*r.fM[kTZ] , fM[kYX]*r.fM[kXT] + fM[kYY]*r.fM[kYT] + fM[kYZ]*r.fM[kZT] + fM[kYT]*r.fM[kTT] , fM[kZX]*r.fM[kXX] + fM[kZY]*r.fM[kYX] + fM[kZZ]*r.fM[kZX] + fM[kZT]*r.fM[kTX] , fM[kZX]*r.fM[kXY] + fM[kZY]*r.fM[kYY] + fM[kZZ]*r.fM[kZY] + fM[kZT]*r.fM[kTY] , fM[kZX]*r.fM[kXZ] + fM[kZY]*r.fM[kYZ] + fM[kZZ]*r.fM[kZZ] + fM[kZT]*r.fM[kTZ] , fM[kZX]*r.fM[kXT] + fM[kZY]*r.fM[kYT] + fM[kZZ]*r.fM[kZT] + fM[kZT]*r.fM[kTT] , fM[kTX]*r.fM[kXX] + fM[kTY]*r.fM[kYX] + fM[kTZ]*r.fM[kZX] + fM[kTT]*r.fM[kTX] , fM[kTX]*r.fM[kXY] + fM[kTY]*r.fM[kYY] + fM[kTZ]*r.fM[kZY] + fM[kTT]*r.fM[kTY] , fM[kTX]*r.fM[kXZ] + fM[kTY]*r.fM[kYZ] + fM[kTZ]*r.fM[kZZ] + fM[kTT]*r.fM[kTZ] , fM[kTX]*r.fM[kXT] + fM[kTY]*r.fM[kYT] + fM[kTZ]*r.fM[kZT] + fM[kTT]*r.fM[kTT] ); } std::ostream & operator<< (std::ostream & os, const LorentzRotation & r) { // TODO - this will need changing for machine-readable issues // and even the human readable form needs formatiing improvements double m[16]; r.GetComponents(m, m+16); os << "\n" << m[0] << " " << m[1] << " " << m[2] << " " << m[3]; os << "\n" << m[4] << " " << m[5] << " " << m[6] << " " << m[7]; os << "\n" << m[8] << " " << m[9] << " " << m[10] << " " << m[11]; os << "\n" << m[12] << " " << m[13] << " " << m[14] << " " << m[15] << "\n"; return os; } } //namespace Math } //namespace ROOT