/* poly/zsolve_cubic.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* zsolve_cubic.c - finds the complex roots of x^3 + a x^2 + b x + c = 0 */ //#include #include #include #include #include #define SWAP(a,b) do { double tmp = b ; b = a ; a = tmp ; } while(0) int gsl_poly_complex_solve_cubic (double a, double b, double c, gsl_complex *z0, gsl_complex *z1, gsl_complex *z2) { double q = (a * a - 3 * b); double r = (2 * a * a * a - 9 * a * b + 27 * c); double Q = q / 9; double R = r / 54; double Q3 = Q * Q * Q; double R2 = R * R; // double CR2 = 729 * r * r; // double CQ3 = 2916 * q * q * q; if (R == 0 && Q == 0) { GSL_REAL (*z0) = -a / 3; GSL_IMAG (*z0) = 0; GSL_REAL (*z1) = -a / 3; GSL_IMAG (*z1) = 0; GSL_REAL (*z2) = -a / 3; GSL_IMAG (*z2) = 0; return 3; } else if (R2 == Q3) { /* this test is actually R2 == Q3, written in a form suitable for exact computation with integers */ /* Due to finite precision some double roots may be missed, and will be considered to be a pair of complex roots z = x +/- epsilon i close to the real axis. */ double sqrtQ = sqrt (Q); if (R > 0) { GSL_REAL (*z0) = -2 * sqrtQ - a / 3; GSL_IMAG (*z0) = 0; GSL_REAL (*z1) = sqrtQ - a / 3; GSL_IMAG (*z1) = 0; GSL_REAL (*z2) = sqrtQ - a / 3; GSL_IMAG (*z2) = 0; } else { GSL_REAL (*z0) = -sqrtQ - a / 3; GSL_IMAG (*z0) = 0; GSL_REAL (*z1) = -sqrtQ - a / 3; GSL_IMAG (*z1) = 0; GSL_REAL (*z2) = 2 * sqrtQ - a / 3; GSL_IMAG (*z2) = 0; } return 3; } else if (R2 < Q3) /* equivalent to R2 < Q3 */ { double sqrtQ = sqrt (Q); double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ; double ctheta = R / sqrtQ3; double theta = 0; if ( ctheta <= -1.0) theta = M_PI; else if ( ctheta < 1.0) theta = acos (R / sqrtQ3); double norm = -2 * sqrtQ; double r0 = norm * cos (theta / 3) - a / 3; double r1 = norm * cos ((theta + 2.0 * M_PI) / 3) - a / 3; double r2 = norm * cos ((theta - 2.0 * M_PI) / 3) - a / 3; /* Sort r0, r1, r2 into increasing order */ if (r0 > r1) SWAP (r0, r1); if (r1 > r2) { SWAP (r1, r2); if (r0 > r1) SWAP (r0, r1); } GSL_REAL (*z0) = r0; GSL_IMAG (*z0) = 0; GSL_REAL (*z1) = r1; GSL_IMAG (*z1) = 0; GSL_REAL (*z2) = r2; GSL_IMAG (*z2) = 0; return 3; } else { double sgnR = (R >= 0 ? 1 : -1); double A = -sgnR * pow (fabs (R) + sqrt (R2 - Q3), 1.0 / 3.0); double B = Q / A; if (A + B < 0) { GSL_REAL (*z0) = A + B - a / 3; GSL_IMAG (*z0) = 0; GSL_REAL (*z1) = -0.5 * (A + B) - a / 3; GSL_IMAG (*z1) = -(sqrt (3.0) / 2.0) * fabs(A - B); GSL_REAL (*z2) = -0.5 * (A + B) - a / 3; GSL_IMAG (*z2) = (sqrt (3.0) / 2.0) * fabs(A - B); } else { GSL_REAL (*z0) = -0.5 * (A + B) - a / 3; GSL_IMAG (*z0) = -(sqrt (3.0) / 2.0) * fabs(A - B); GSL_REAL (*z1) = -0.5 * (A + B) - a / 3; GSL_IMAG (*z1) = (sqrt (3.0) / 2.0) * fabs(A - B); GSL_REAL (*z2) = A + B - a / 3; GSL_IMAG (*z2) = 0; } return 3; } }