// @(#)root/matrix:$Id$ // Authors: Fons Rademakers, Eddy Offermann Dec 2003 /************************************************************************* * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ ////////////////////////////////////////////////////////////////////////// // // // TMatrixDSymEigen // // // // Eigenvalues and eigenvectors of a real symmetric matrix. // // // // If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is // // diagonal and the eigenvector matrix V is orthogonal. That is, the // // diagonal values of D are the eigenvalues, and V*V' = I, where I is // // the identity matrix. The columns of V represent the eigenvectors in // // the sense that A*V = V*D. // // // ////////////////////////////////////////////////////////////////////////// #include "TMatrixDSymEigen.h" #include "TMath.h" ClassImp(TMatrixDSymEigen) //______________________________________________________________________________ TMatrixDSymEigen::TMatrixDSymEigen(const TMatrixDSym &a) { // Constructor for eigen-problem of symmetric matrix A . R__ASSERT(a.IsValid()); const Int_t nRows = a.GetNrows(); const Int_t rowLwb = a.GetRowLwb(); fEigenValues.ResizeTo(rowLwb,rowLwb+nRows-1); fEigenVectors.ResizeTo(a); fEigenVectors = a; TVectorD offDiag; Double_t work[kWorkMax]; if (nRows > kWorkMax) offDiag.ResizeTo(nRows); else offDiag.Use(nRows,work); // Tridiagonalize matrix MakeTridiagonal(fEigenVectors,fEigenValues,offDiag); // Make eigenvectors and -values MakeEigenVectors(fEigenVectors,fEigenValues,offDiag); } //______________________________________________________________________________ TMatrixDSymEigen::TMatrixDSymEigen(const TMatrixDSymEigen &another) { // Copy constructor *this = another; } //______________________________________________________________________________ void TMatrixDSymEigen::MakeTridiagonal(TMatrixD &v,TVectorD &d,TVectorD &e) { // This is derived from the Algol procedures tred2 by Bowdler, Martin, Reinsch, and // Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. Double_t *pV = v.GetMatrixArray(); Double_t *pD = d.GetMatrixArray(); Double_t *pE = e.GetMatrixArray(); const Int_t n = v.GetNrows(); Int_t i,j,k; Int_t off_n1 = (n-1)*n; for (j = 0; j < n; j++) pD[j] = pV[off_n1+j]; // Householder reduction to tridiagonal form. for (i = n-1; i > 0; i--) { const Int_t off_i1 = (i-1)*n; const Int_t off_i = i*n; // Scale to avoid under/overflow. Double_t scale = 0.0; Double_t h = 0.0; for (k = 0; k < i; k++) scale = scale+TMath::Abs(pD[k]); if (scale == 0.0) { pE[i] = pD[i-1]; for (j = 0; j < i; j++) { const Int_t off_j = j*n; pD[j] = pV[off_i1+j]; pV[off_i+j] = 0.0; pV[off_j+i] = 0.0; } } else { // Generate Householder vector. for (k = 0; k < i; k++) { pD[k] /= scale; h += pD[k]*pD[k]; } Double_t f = pD[i-1]; Double_t g = TMath::Sqrt(h); if (f > 0) g = -g; pE[i] = scale*g; h = h-f*g; pD[i-1] = f-g; for (j = 0; j < i; j++) pE[j] = 0.0; // Apply similarity transformation to remaining columns. for (j = 0; j < i; j++) { const Int_t off_j = j*n; f = pD[j]; pV[off_j+i] = f; g = pE[j]+pV[off_j+j]*f; for (k = j+1; k <= i-1; k++) { const Int_t off_k = k*n; g += pV[off_k+j]*pD[k]; pE[k] += pV[off_k+j]*f; } pE[j] = g; } f = 0.0; for (j = 0; j < i; j++) { pE[j] /= h; f += pE[j]*pD[j]; } Double_t hh = f/(h+h); for (j = 0; j < i; j++) pE[j] -= hh*pD[j]; for (j = 0; j < i; j++) { f = pD[j]; g = pE[j]; for (k = j; k <= i-1; k++) { const Int_t off_k = k*n; pV[off_k+j] -= (f*pE[k]+g*pD[k]); } pD[j] = pV[off_i1+j]; pV[off_i+j] = 0.0; } } pD[i] = h; } // Accumulate transformations. for (i = 0; i < n-1; i++) { const Int_t off_i = i*n; pV[off_n1+i] = pV[off_i+i]; pV[off_i+i] = 1.0; Double_t h = pD[i+1]; if (h != 0.0) { for (k = 0; k <= i; k++) { const Int_t off_k = k*n; pD[k] = pV[off_k+i+1]/h; } for (j = 0; j <= i; j++) { Double_t g = 0.0; for (k = 0; k <= i; k++) { const Int_t off_k = k*n; g += pV[off_k+i+1]*pV[off_k+j]; } for (k = 0; k <= i; k++) { const Int_t off_k = k*n; pV[off_k+j] -= g*pD[k]; } } } for (k = 0; k <= i; k++) { const Int_t off_k = k*n; pV[off_k+i+1] = 0.0; } } for (j = 0; j < n; j++) { pD[j] = pV[off_n1+j]; pV[off_n1+j] = 0.0; } pV[off_n1+n-1] = 1.0; pE[0] = 0.0; } //______________________________________________________________________________ void TMatrixDSymEigen::MakeEigenVectors(TMatrixD &v,TVectorD &d,TVectorD &e) { // Symmetric tridiagonal QL algorithm. // This is derived from the Algol procedures tql2, by Bowdler, Martin, Reinsch, and // Wilkinson, Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. Double_t *pV = v.GetMatrixArray(); Double_t *pD = d.GetMatrixArray(); Double_t *pE = e.GetMatrixArray(); const Int_t n = v.GetNrows(); Int_t i,j,k,l; for (i = 1; i < n; i++) pE[i-1] = pE[i]; pE[n-1] = 0.0; Double_t f = 0.0; Double_t tst1 = 0.0; Double_t eps = TMath::Power(2.0,-52.0); for (l = 0; l < n; l++) { // Find small subdiagonal element tst1 = TMath::Max(tst1,TMath::Abs(pD[l])+TMath::Abs(pE[l])); Int_t m = l; // Original while-loop from Java code while (m < n) { if (TMath::Abs(pE[m]) <= eps*tst1) { break; } m++; } // If m == l, pD[l] is an eigenvalue, // otherwise, iterate. if (m > l) { Int_t iter = 0; do { if (iter++ == 30) { // (check iteration count here.) Error("MakeEigenVectors","too many iterations"); break; } // Compute implicit shift Double_t g = pD[l]; Double_t p = (pD[l+1]-g)/(2.0*pE[l]); Double_t r = TMath::Hypot(p,1.0); if (p < 0) r = -r; pD[l] = pE[l]/(p+r); pD[l+1] = pE[l]*(p+r); Double_t dl1 = pD[l+1]; Double_t h = g-pD[l]; for (i = l+2; i < n; i++) pD[i] -= h; f = f+h; // Implicit QL transformation. p = pD[m]; Double_t c = 1.0; Double_t c2 = c; Double_t c3 = c; Double_t el1 = pE[l+1]; Double_t s = 0.0; Double_t s2 = 0.0; for (i = m-1; i >= l; i--) { c3 = c2; c2 = c; s2 = s; g = c*pE[i]; h = c*p; r = TMath::Hypot(p,pE[i]); pE[i+1] = s*r; s = pE[i]/r; c = p/r; p = c*pD[i]-s*g; pD[i+1] = h+s*(c*g+s*pD[i]); // Accumulate transformation. for (k = 0; k < n; k++) { const Int_t off_k = k*n; h = pV[off_k+i+1]; pV[off_k+i+1] = s*pV[off_k+i]+c*h; pV[off_k+i] = c*pV[off_k+i]-s*h; } } p = -s*s2*c3*el1*pE[l]/dl1; pE[l] = s*p; pD[l] = c*p; // Check for convergence. } while (TMath::Abs(pE[l]) > eps*tst1); } pD[l] = pD[l]+f; pE[l] = 0.0; } // Sort eigenvalues and corresponding vectors. for (i = 0; i < n-1; i++) { k = i; Double_t p = pD[i]; for (j = i+1; j < n; j++) { if (pD[j] > p) { k = j; p = pD[j]; } } if (k != i) { pD[k] = pD[i]; pD[i] = p; for (j = 0; j < n; j++) { const Int_t off_j = j*n; p = pV[off_j+i]; pV[off_j+i] = pV[off_j+k]; pV[off_j+k] = p; } } } } //______________________________________________________________________________ TMatrixDSymEigen &TMatrixDSymEigen::operator=(const TMatrixDSymEigen &source) { // Assignment operator if (this != &source) { fEigenVectors.ResizeTo(source.fEigenVectors); fEigenValues.ResizeTo(source.fEigenValues); } return *this; }