// @(#)root/minuit2:$Id$ // Authors: M. Winkler, F. James, L. Moneta, A. Zsenei 2003-2005 /********************************************************************** * * * Copyright (c) 2005 LCG ROOT Math team, CERN/PH-SFT * * * **********************************************************************/ #include "Minuit2/FumiliBuilder.h" #include "Minuit2/FumiliStandardMaximumLikelihoodFCN.h" #include "Minuit2/GradientCalculator.h" //#include "Minuit2/Numerical2PGradientCalculator.h" #include "Minuit2/MinimumState.h" #include "Minuit2/MinimumError.h" #include "Minuit2/FunctionGradient.h" #include "Minuit2/FunctionMinimum.h" #include "Minuit2/MnLineSearch.h" #include "Minuit2/MinimumSeed.h" #include "Minuit2/MnFcn.h" #include "Minuit2/MnMachinePrecision.h" #include "Minuit2/MnPosDef.h" #include "Minuit2/MnParabolaPoint.h" #include "Minuit2/LaSum.h" #include "Minuit2/LaProd.h" #include "Minuit2/MnStrategy.h" #include "Minuit2/MnHesse.h" //#define DEBUG 1 #if defined(DEBUG) || defined(WARNINGMSG) #include "Minuit2/MnPrint.h" #endif namespace ROOT { namespace Minuit2 { double inner_product(const LAVector&, const LAVector&); FunctionMinimum FumiliBuilder::Minimum(const MnFcn& fcn, const GradientCalculator& gc, const MinimumSeed& seed, const MnStrategy& strategy, unsigned int maxfcn, double edmval) const { // top level function to find minimum from a given initial seed // iterate on a minimum search in case of first attempt is not successful edmval *= 0.0001; //edmval *= 0.1; // use small factor for Fumili #ifdef DEBUG std::cout<<"FumiliBuilder convergence when edm < "< result; // result.reserve(1); result.reserve(8); result.push_back( seed.State() ); int printLevel = MnPrint::Level(); if (printLevel >1) { std::cout << "Fumili: start iterating until Edm is < " << edmval << std::endl; MnPrint::PrintState(std::cout, seed.State(), "Fumili: Initial state "); } // do actual iterations // try first with a maxfxn = 50% of maxfcn // Fumili in principle needs much less iterations int maxfcn_eff = int(0.5*maxfcn); int ipass = 0; double edmprev = 1; do { min = Minimum(fcn, gc, seed, result, maxfcn_eff, edmval); // second time check for validity of function Minimum if (ipass > 0) { if(!min.IsValid()) { #ifdef WARNINGMSG MN_INFO_MSG("FumiliBuilder: FunctionMinimum is invalid."); #endif return min; } } // resulting edm of minimization edm = result.back().Edm(); #ifdef DEBUG std::cout << "approximate edm is " << edm << std::endl; std::cout << "npass is " << ipass << std::endl; #endif // call always Hesse (error matrix from Fumili is never accurate since is approximate) #ifdef DEBUG std::cout << "FumiliBuilder will verify convergence and Error matrix. " << std::endl; std::cout << "dcov is = "<< min.Error().Dcovar() << std::endl; #endif // // recalculate the gradient using the numerical gradient calculator // Numerical2PGradientCalculator ngc(fcn, min.Seed().Trafo(), strategy); // FunctionGradient ng = ngc( min.State().Parameters() ); // MinimumState tmp( min.State().Parameters(), min.State().Error(), ng, min.State().Edm(), min.State().NFcn() ); MinimumState st = MnHesse(strategy)(fcn, min.State(), min.Seed().Trafo(),maxfcn); result.push_back( st ); if (printLevel > 1) { MnPrint::PrintState(std::cout, st, "Fumili: After Hessian "); } // check edm edm = st.Edm(); #ifdef DEBUG std::cout << "edm after Hesse calculation " << edm << std::endl; std::cout << "state after Hessian calculation " << st << std::endl; #endif // break the loop if edm is NOT getting smaller if (ipass > 0 && edm >= edmprev) { #ifdef WARNINGMSG MN_INFO_MSG("FumiliBuilder: Exit iterations, no improvements after Hesse "); MN_INFO_VAL2("current edm is ", edm); MN_INFO_VAL2("previous value ",edmprev); #endif break; } if (edm > edmval) { #ifdef DEBUG std::cout << "FumiliBuilder: Tolerance is not sufficient - edm is " << edm << " requested " << edmval << " continue the minimization" << std::endl; #endif } else { // Case when edm < edmval after Heasse but min is flagged eith a bad edm: // make then a new Function minimum since now edm is ok if (min.IsAboveMaxEdm() ) { min = FunctionMinimum( min.Seed(), min.States(), min.Up() ); break; } } // end loop on iterations // ? need a maximum here (or max of function calls is enough ? ) // continnue iteration (re-calculate function Minimum if edm IS NOT sufficient) // no need to check that hesse calculation is done (if isnot done edm is OK anyway) // count the pass to exit second time when function Minimum is invalid // increase by 20% maxfcn for doing some more tests if (ipass == 0) maxfcn_eff = maxfcn; ipass++; edmprev = edm; } while (edm > edmval ); // Add latest state (Hessian calculation) min.Add( result.back() ); return min; } FunctionMinimum FumiliBuilder::Minimum(const MnFcn& fcn, const GradientCalculator& gc, const MinimumSeed& seed, std::vector& result, unsigned int maxfcn, double edmval) const { // function performing the minimum searches using the FUMILI algorithm // after the modification when I iterate on this functions, so it can be called many times, // the seed is used here only to get precision and construct the returned FunctionMinimum object /* Three options were possible: 1) create two parallel and completely separate hierarchies, in which case the FumiliMinimizer would NOT inherit from ModularFunctionMinimizer, FumiliBuilder would not inherit from MinimumBuilder etc 2) Use the inheritance (base classes of ModularFunctionMinimizer, MinimumBuilder etc), but recreate the member functions Minimize() and Minimum() respectively (naming them for example minimize2() and minimum2()) so that they can take FumiliFCNBase as Parameter instead FCNBase (otherwise one wouldn't be able to call the Fumili-specific methods). 3) Cast in the daughter classes derived from ModularFunctionMinimizer, MinimumBuilder. The first two would mean to duplicate all the functionality already existent, which is a very bad practice and Error-prone. The third one is the most elegant and effective solution, where the only constraint is that the user must know that he has to pass a subclass of FumiliFCNBase to the FumiliMinimizer and not just a subclass of FCNBase. BTW, the first two solutions would have meant to recreate also a parallel structure for MnFcn... **/ // const FumiliFCNBase* tmpfcn = dynamic_cast(&(fcn.Fcn())); const MnMachinePrecision& prec = seed.Precision(); const MinimumState & initialState = result.back(); double edm = initialState.Edm(); #ifdef DEBUG std::cout << "\n\nDEBUG FUMILI Builder \nInitial State: " << " Parameter " << initialState.Vec() << " Gradient " << initialState.Gradient().Vec() << " Inv Hessian " << initialState.Error().InvHessian() << " edm = " << initialState.Edm() << " maxfcn = " << maxfcn << " tolerance = " << edmval << std::endl; #endif // iterate until edm is small enough or max # of iterations reached edm *= (1. + 3.*initialState.Error().Dcovar()); MnAlgebraicVector step(initialState.Gradient().Vec().size()); // initial lambda Value double lambda = 0.001; int printLevel = MnPrint::Level(); do { // const MinimumState& s0 = result.back(); MinimumState s0 = result.back(); step = -1.*s0.Error().InvHessian()*s0.Gradient().Vec(); #ifdef DEBUG std::cout << "\n\n---> Iteration - " << result.size() << "\nFval = " << s0.Fval() << " numOfCall = " << fcn.NumOfCalls() << "\nInternal Parameter values " << s0.Vec() << " Newton step " << step << std::endl; #endif double gdel = inner_product(step, s0.Gradient().Grad()); if(gdel > 0.) { #ifdef WARNINGMSG MN_INFO_MSG("FumiliBuilder: matrix not pos.def, gdel > 0"); MN_INFO_VAL(gdel); #endif MnPosDef psdf; s0 = psdf(s0, prec); step = -1.*s0.Error().InvHessian()*s0.Gradient().Vec(); gdel = inner_product(step, s0.Gradient().Grad()); #ifdef WARNINGMSG MN_INFO_VAL2("After correction ",gdel); #endif if(gdel > 0.) { result.push_back(s0); return FunctionMinimum(seed, result, fcn.Up()); } } // MnParabolaPoint pp = lsearch(fcn, s0.Parameters(), step, gdel, prec); // if(fabs(pp.Y() - s0.Fval()) < prec.Eps()) { // std::cout<<"FumiliBuilder: no improvement"<= s0.Fval() ) { MnLineSearch lsearch; MnParabolaPoint pp = lsearch(fcn, s0.Parameters(), step, gdel, prec); if(fabs(pp.Y() - s0.Fval()) < prec.Eps()) { //std::cout<<"FumiliBuilder: no improvement"< 1) { MnPrint::PrintState(std::cout, result.back(), "Fumili: Iteration # ",result.size()); } edm *= (1. + 3.*e.Dcovar()); } while(edm > edmval && fcn.NumOfCalls() < maxfcn); if(fcn.NumOfCalls() >= maxfcn) { #ifdef WARNINGMSG MN_INFO_MSG("FumiliBuilder: call limit exceeded."); #endif return FunctionMinimum(seed, result, fcn.Up(), FunctionMinimum::MnReachedCallLimit()); } if(edm > edmval) { if(edm < fabs(prec.Eps2()*result.back().Fval())) { #ifdef WARNINGMSG MN_INFO_MSG("FumiliBuilder: machine accuracy limits further improvement."); #endif return FunctionMinimum(seed, result, fcn.Up()); } else if(edm < 10.*edmval) { return FunctionMinimum(seed, result, fcn.Up()); } else { #ifdef WARNINGMSG MN_INFO_MSG("FumiliBuilder: finishes without convergence."); MN_INFO_VAL2("FumiliBuilder: ",edm); MN_INFO_VAL2(" requested: ",edmval); #endif return FunctionMinimum(seed, result, fcn.Up(), FunctionMinimum::MnAboveMaxEdm()); } } // std::cout<<"result.back().Error().Dcovar()= "<