// @(#)root/minuit2:$Id$ // Authors: M. Winkler, F. James, L. Moneta, A. Zsenei 2003-2005 /********************************************************************** * * * Copyright (c) 2005 LCG ROOT Math team, CERN/PH-SFT * * * **********************************************************************/ /* dspr.f -- translated by f2c (version 20010320). You must link the resulting object file with the libraries: -lf2c -lm (in that order) */ namespace ROOT { namespace Minuit2 { bool mnlsame(const char*, const char*); int mnxerbla(const char*, int); int mndspr(const char* uplo, unsigned int n, double alpha, const double* x, int incx, double* ap) { /* System generated locals */ int i__1, i__2; /* Local variables */ int info; double temp; int i__, j, k; int kk, ix, jx, kx = 0; /* .. Scalar Arguments .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSPR performs the symmetric rank 1 operation */ /* A := alpha*x*x' + A, */ /* where alpha is a real scalar, x is an n element vector and A is an */ /* n by n symmetric matrix, supplied in packed form. */ /* Parameters */ /* ========== */ /* UPLO - CHARACTER*1. */ /* On entry, UPLO specifies whether the Upper or Lower */ /* triangular part of the matrix A is supplied in the packed */ /* array AP as follows: */ /* UPLO = 'U' or 'u' The Upper triangular part of A is */ /* supplied in AP. */ /* UPLO = 'L' or 'l' The Lower triangular part of A is */ /* supplied in AP. */ /* Unchanged on exit. */ /* N - INTEGER. */ /* On entry, N specifies the order of the matrix A. */ /* N must be at least zero. */ /* Unchanged on exit. */ /* ALPHA - DOUBLE PRECISION. */ /* On entry, ALPHA specifies the scalar alpha. */ /* Unchanged on exit. */ /* X - DOUBLE PRECISION array of dimension at least */ /* ( 1 + ( n - 1 )*abs( INCX ) ). */ /* Before entry, the incremented array X must contain the n */ /* element vector x. */ /* Unchanged on exit. */ /* INCX - INTEGER. */ /* On entry, INCX specifies the increment for the Elements of */ /* X. INCX must not be zero. */ /* Unchanged on exit. */ /* AP - DOUBLE PRECISION array of DIMENSION at least */ /* ( ( n*( n + 1 ) )/2 ). */ /* Before entry with UPLO = 'U' or 'u', the array AP must */ /* contain the Upper triangular part of the symmetric matrix */ /* packed sequentially, column by column, so that AP( 1 ) */ /* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */ /* and a( 2, 2 ) respectively, and so on. On exit, the array */ /* AP is overwritten by the Upper triangular part of the */ /* updated matrix. */ /* Before entry with UPLO = 'L' or 'l', the array AP must */ /* contain the Lower triangular part of the symmetric matrix */ /* packed sequentially, column by column, so that AP( 1 ) */ /* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */ /* and a( 3, 1 ) respectively, and so on. On exit, the array */ /* AP is overwritten by the Lower triangular part of the */ /* updated matrix. */ /* Level 2 Blas routine. */ /* -- Written on 22-October-1986. */ /* Jack Dongarra, Argonne National Lab. */ /* Jeremy Du Croz, Nag Central Office. */ /* Sven Hammarling, Nag Central Office. */ /* Richard Hanson, Sandia National Labs. */ /* .. Parameters .. */ /* .. Local Scalars .. */ /* .. External Functions .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ap; --x; /* Function Body */ info = 0; if (! mnlsame(uplo, "U") && ! mnlsame(uplo, "L")) { info = 1; } // else if (n < 0) { // info = 2; // } else if (incx == 0) { info = 5; } if (info != 0) { mnxerbla("DSPR ", info); return 0; } /* Quick return if possible. */ if (n == 0 || alpha == 0.) { return 0; } /* Set the start point in X if the increment is not unity. */ if (incx <= 0) { kx = 1 - (n - 1) * incx; } else if (incx != 1) { kx = 1; } /* Start the operations. In this version the Elements of the array AP */ /* are accessed sequentially with one pass through AP. */ kk = 1; if (mnlsame(uplo, "U")) { /* Form A when Upper triangle is stored in AP. */ if (incx == 1) { i__1 = n; for (j = 1; j <= i__1; ++j) { if (x[j] != 0.) { temp = alpha * x[j]; k = kk; i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { ap[k] += x[i__] * temp; ++k; /* L10: */ } } kk += j; /* L20: */ } } else { jx = kx; i__1 = n; for (j = 1; j <= i__1; ++j) { if (x[jx] != 0.) { temp = alpha * x[jx]; ix = kx; i__2 = kk + j - 1; for (k = kk; k <= i__2; ++k) { ap[k] += x[ix] * temp; ix += incx; /* L30: */ } } jx += incx; kk += j; /* L40: */ } } } else { /* Form A when Lower triangle is stored in AP. */ if (incx == 1) { i__1 = n; for (j = 1; j <= i__1; ++j) { if (x[j] != 0.) { temp = alpha * x[j]; k = kk; i__2 = n; for (i__ = j; i__ <= i__2; ++i__) { ap[k] += x[i__] * temp; ++k; /* L50: */ } } kk = kk + n - j + 1; /* L60: */ } } else { jx = kx; i__1 = n; for (j = 1; j <= i__1; ++j) { if (x[jx] != 0.) { temp = alpha * x[jx]; ix = jx; i__2 = kk + n - j; for (k = kk; k <= i__2; ++k) { ap[k] += x[ix] * temp; ix += incx; /* L70: */ } } jx += incx; kk = kk + n - j + 1; /* L80: */ } } } return 0; /* End of DSPR . */ } /* dspr_ */ } // namespace Minuit2 } // namespace ROOT