// @(#)root/mlp:$Id$ // Author: Christophe.Delaere@cern.ch 25/04/04 /************************************************************************* * Copyright (C) 1995-2003, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ /////////////////////////////////////////////////////////////////////////// // // TMLPAnalyzer // // This utility class contains a set of tests usefull when developing // a neural network. // It allows you to check for unneeded variables, and to control // the network structure. // /////////////////////////////////////////////////////////////////////////// #include "TROOT.h" #include "TSynapse.h" #include "TNeuron.h" #include "TMultiLayerPerceptron.h" #include "TMLPAnalyzer.h" #include "TTree.h" #include "TTreeFormula.h" #include "TEventList.h" #include "TH1D.h" #include "TProfile.h" #include "THStack.h" #include "TLegend.h" #include "TPad.h" #include "TCanvas.h" #include "TGaxis.h" #include "TRegexp.h" #include "TMath.h" #include "Riostream.h" #include ClassImp(TMLPAnalyzer) //______________________________________________________________________________ TMLPAnalyzer::~TMLPAnalyzer() { // Destructor delete fAnalysisTree; delete fIOTree; } //______________________________________________________________________________ Int_t TMLPAnalyzer::GetLayers() { // Returns the number of layers. TString fStructure = fNetwork->GetStructure(); return fStructure.CountChar(':')+1; } //______________________________________________________________________________ Int_t TMLPAnalyzer::GetNeurons(Int_t layer) { // Returns the number of neurons in given layer. if(layer==1) { TString fStructure = fNetwork->GetStructure(); TString input = TString(fStructure(0, fStructure.First(':'))); return input.CountChar(',')+1; } else if(layer==GetLayers()) { TString fStructure = fNetwork->GetStructure(); TString output = TString(fStructure(fStructure.Last(':') + 1, fStructure.Length() - fStructure.Last(':'))); return output.CountChar(',')+1; } else { Int_t cnt=1; TString fStructure = fNetwork->GetStructure(); TString hidden = TString(fStructure(fStructure.First(':') + 1, fStructure.Last(':') - fStructure.First(':') - 1)); Int_t beg = 0; Int_t end = hidden.Index(":", beg + 1); Int_t num = 0; while (end != -1) { num = atoi(TString(hidden(beg, end - beg)).Data()); cnt++; beg = end + 1; end = hidden.Index(":", beg + 1); if(layer==cnt) return num; } num = atoi(TString(hidden(beg, hidden.Length() - beg)).Data()); cnt++; if(layer==cnt) return num; } return -1; } //______________________________________________________________________________ TString TMLPAnalyzer::GetNeuronFormula(Int_t idx) { // Returns the formula used as input for neuron (idx) in // the first layer. TString fStructure = fNetwork->GetStructure(); TString input = TString(fStructure(0, fStructure.First(':'))); Int_t beg = 0; Int_t end = input.Index(",", beg + 1); TString brName; Int_t cnt = 0; while (end != -1) { brName = TString(input(beg, end - beg)); if (brName[0]=='@') brName = brName(1,brName.Length()-1); beg = end + 1; end = input.Index(",", beg + 1); if(cnt==idx) return brName; cnt++; } brName = TString(input(beg, input.Length() - beg)); if (brName[0]=='@') brName = brName(1,brName.Length()-1); return brName; } //______________________________________________________________________________ const char* TMLPAnalyzer::GetInputNeuronTitle(Int_t in) { // Returns the name of any neuron from the input layer TNeuron* neuron=(TNeuron*)fNetwork->fFirstLayer[in]; return neuron ? neuron->GetName() : "NO SUCH NEURON"; } //______________________________________________________________________________ const char* TMLPAnalyzer::GetOutputNeuronTitle(Int_t out) { // Returns the name of any neuron from the output layer TNeuron* neuron=(TNeuron*)fNetwork->fLastLayer[out]; return neuron ? neuron->GetName() : "NO SUCH NEURON"; } //______________________________________________________________________________ void TMLPAnalyzer::CheckNetwork() { // Gives some information about the network in the terminal. TString fStructure = fNetwork->GetStructure(); cout << "Network with structure: " << fStructure.Data() << endl; cout << "inputs with low values in the differences plot may not be needed" << endl; // Checks if some input variable is not needed char var[64], sel[64]; for (Int_t i = 0; i < GetNeurons(1); i++) { snprintf(var,64,"diff>>tmp%d",i); snprintf(sel,64,"inNeuron==%d",i); fAnalysisTree->Draw(var, sel, "goff"); TH1F* tmp = (TH1F*)gDirectory->Get(Form("tmp%d",i)); if (!tmp) continue; cout << GetInputNeuronTitle(i) << " -> " << tmp->GetMean() << " +/- " << tmp->GetRMS() << endl; } } //______________________________________________________________________________ void TMLPAnalyzer::GatherInformations() { // Collect information about what is usefull in the network. // This method has to be called first when analyzing a network. // Fills the two analysis trees. Double_t shift = 0.1; TTree* data = fNetwork->fData; TEventList* test = fNetwork->fTest; Int_t nEvents = test->GetN(); Int_t nn = GetNeurons(1); Double_t* params = new Double_t[nn]; Double_t* rms = new Double_t[nn]; TTreeFormula** formulas = new TTreeFormula*[nn]; Int_t* index = new Int_t[nn]; TString formula; TRegexp re("{[0-9]+}$"); Ssiz_t len = formula.Length(); Ssiz_t pos = -1; Int_t i(0), j(0), k(0), l(0); for(i=0; iDraw(Form("%s>>tmpb",formula.Data()),"","goff"); rms[i] = tmp.GetRMS(); } Int_t inNeuron = 0; Double_t diff = 0.; if(fAnalysisTree) delete fAnalysisTree; fAnalysisTree = new TTree("result","analysis"); fAnalysisTree->SetDirectory(0); fAnalysisTree->Branch("inNeuron",&inNeuron,"inNeuron/I"); fAnalysisTree->Branch("diff",&diff,"diff/D"); Int_t numOutNodes=GetNeurons(GetLayers()); Double_t *outVal=new Double_t[numOutNodes]; Double_t *trueVal=new Double_t[numOutNodes]; delete fIOTree; fIOTree=new TTree("MLP_iotree","MLP_iotree"); fIOTree->SetDirectory(0); TString leaflist; for (i=0; iBranch("In", params, leaflist); leaflist=""; for (i=0; iBranch("Out", outVal, leaflist); leaflist=""; for (i=0; iBranch("True", trueVal, leaflist); Double_t v1 = 0.; Double_t v2 = 0.; // Loop on the events in the test sample for(j=0; j< nEvents; j++) { fNetwork->GetEntry(test->GetEntry(j)); // Loop on the neurons to evaluate for(k=0; kEvalInstance(index[k]); } for(k=0; kEvaluate(k,params); trueVal[k] = ((TNeuron*)fNetwork->fLastLayer[k])->GetBranch(); } fIOTree->Fill(); // Loop on the input neurons for (i = 0; i < GetNeurons(1); i++) { inNeuron = i; diff = 0; // Loop on the neurons in the output layer for(l=0; lEvaluate(l,params); params[i] -= 2*shift*rms[i]; v2 = fNetwork->Evaluate(l,params); diff += (v1-v2)*(v1-v2); // reset to original vealue params[i] += shift*rms[i]; } diff = TMath::Sqrt(diff); fAnalysisTree->Fill(); } } delete[] params; delete[] rms; delete[] outVal; delete[] trueVal; delete[] index; for(i=0; iResetBranchAddresses(); fIOTree->ResetBranchAddresses(); } //______________________________________________________________________________ void TMLPAnalyzer::DrawDInput(Int_t i) { // Draws the distribution (on the test sample) of the // impact on the network output of a small variation of // the ith input. char sel[64]; snprintf(sel,64, "inNeuron==%d", i); fAnalysisTree->Draw("diff", sel); } //______________________________________________________________________________ void TMLPAnalyzer::DrawDInputs() { // Draws the distribution (on the test sample) of the // impact on the network output of a small variation of // each input. // DrawDInputs() draws something that approximates the distribution of the // derivative of the NN w.r.t. each input. That quantity is recognized as // one of the measures to determine key quantities in the network. // // What is done is to vary one input around its nominal value and to see // how the NN changes. This is done for each entry in the sample and produces // a distribution. // // What you can learn from that is: // - is variable a really useful, or is my network insensitive to it ? // - is there any risk of big systematic ? Is the network extremely sensitive // to small variations of any of my inputs ? // // As you might understand, this is to be considered with care and can serve // as input for an "educated guess" when optimizing the network. THStack* stack = new THStack("differences","differences (impact of variables on ANN)"); TLegend* legend = new TLegend(0.75,0.75,0.95,0.95); TH1F* tmp = 0; char var[64], sel[64]; for(Int_t i = 0; i < GetNeurons(1); i++) { snprintf(var,64, "diff>>tmp%d", i); snprintf(sel,64, "inNeuron==%d", i); fAnalysisTree->Draw(var, sel, "goff"); tmp = (TH1F*)gDirectory->Get(Form("tmp%d",i)); tmp->SetDirectory(0); tmp->SetLineColor(i+1); stack->Add(tmp); legend->AddEntry(tmp,GetInputNeuronTitle(i),"l"); } stack->Draw("nostack"); legend->Draw(); gPad->SetLogy(); } //______________________________________________________________________________ void TMLPAnalyzer::DrawNetwork(Int_t neuron, const char* signal, const char* bg) { // Draws the distribution of the neural network (using ith neuron). // Two distributions are drawn, for events passing respectively the "signal" // and "background" cuts. Only the test sample is used. TTree* data = fNetwork->fData; TEventList* test = fNetwork->fTest; TEventList* current = data->GetEventList(); data->SetEventList(test); THStack* stack = new THStack("__NNout_TMLPA",Form("Neural net output (neuron %d)",neuron)); TH1F *bgh = new TH1F("__bgh_TMLPA", "NN output", 50, -0.5, 1.5); TH1F *sigh = new TH1F("__sigh_TMLPA", "NN output", 50, -0.5, 1.5); bgh->SetDirectory(0); sigh->SetDirectory(0); Int_t nEvents = 0; Int_t j=0; // build event lists for signal and background TEventList* signal_list = new TEventList("__tmpSig_MLPA"); TEventList* bg_list = new TEventList("__tmpBkg_MLPA"); data->Draw(">>__tmpSig_MLPA",signal,"goff"); data->Draw(">>__tmpBkg_MLPA",bg,"goff"); // fill the background nEvents = bg_list->GetN(); for(j=0; j< nEvents; j++) { bgh->Fill(fNetwork->Result(bg_list->GetEntry(j),neuron)); } // fill the signal nEvents = signal_list->GetN(); for(j=0; j< nEvents; j++) { sigh->Fill(fNetwork->Result(signal_list->GetEntry(j),neuron)); } // draws the result bgh->SetLineColor(kBlue); bgh->SetFillStyle(3008); bgh->SetFillColor(kBlue); sigh->SetLineColor(kRed); sigh->SetFillStyle(3003); sigh->SetFillColor(kRed); bgh->SetStats(0); sigh->SetStats(0); stack->Add(bgh); stack->Add(sigh); TLegend *legend = new TLegend(.75, .80, .95, .95); legend->AddEntry(bgh, "Background"); legend->AddEntry(sigh,"Signal"); stack->Draw("nostack"); legend->Draw(); // restore the default event list data->SetEventList(current); delete signal_list; delete bg_list; } //______________________________________________________________________________ TProfile* TMLPAnalyzer::DrawTruthDeviation(Int_t outnode /*=0*/, Option_t *option /*=""*/) { // Create a profile of the difference of the MLP output minus the // true value for a given output node outnode, vs the true value for // outnode, for all test data events. This method is mainly useful // when doing regression analysis with the MLP (i.e. not classification, // but continuous truth values). // The resulting TProfile histogram is returned. // It is not drawn if option "goff" is specified. // Options are passed to TProfile::Draw if (!fIOTree) GatherInformations(); TString pipehist=Form("MLP_truthdev_%d",outnode); TString drawline; drawline.Form("Out.Out%d-True.True%d:True.True%d>>", outnode, outnode, outnode); fIOTree->Draw(drawline+pipehist+"(20)", "", "goff prof"); TProfile* h=(TProfile*)gDirectory->Get(pipehist); h->SetDirectory(0); const char* title=GetOutputNeuronTitle(outnode); if (title) { h->SetTitle(Form("#Delta(output - truth) vs. truth for %s", title)); h->GetXaxis()->SetTitle(title); h->GetYaxis()->SetTitle(Form("#Delta(output - truth) for %s", title)); } if (!strstr(option,"goff")) h->Draw(); return h; } //______________________________________________________________________________ THStack* TMLPAnalyzer::DrawTruthDeviations(Option_t *option /*=""*/) { // Creates TProfiles of the difference of the MLP output minus the // true value vs the true value, one for each output, filled with the // test data events. This method is mainly useful when doing regression // analysis with the MLP (i.e. not classification, but continuous truth // values). // The returned THStack contains all the TProfiles. It is drawn unless // the option "goff" is specified. // Options are passed to TProfile::Draw. THStack *hs=new THStack("MLP_TruthDeviation", "Deviation of MLP output from truth"); // leg!=0 means we're drawing TLegend *leg=0; if (!option || !strstr(option,"goff")) leg=new TLegend(.4,.85,.95,.95,"#Delta(output - truth) vs. truth for:"); const char* xAxisTitle=0; // create profile for each input neuron, // adding them into the THStack and the TLegend for (Int_t outnode=0; outnodeSetLineColor(1+outnode); hs->Add(h, option); if (leg) leg->AddEntry(h,GetOutputNeuronTitle(outnode)); if (!outnode) // Xaxis title is the same for all, extract it from the first one. xAxisTitle=h->GetXaxis()->GetTitle(); } if (leg) { hs->Draw("nostack"); leg->Draw(); // gotta draw before accessing the axes hs->GetXaxis()->SetTitle(xAxisTitle); hs->GetYaxis()->SetTitle("#Delta(output - truth)"); } return hs; } //______________________________________________________________________________ TProfile* TMLPAnalyzer::DrawTruthDeviationInOut(Int_t innode, Int_t outnode /*=0*/, Option_t *option /*=""*/) { // Creates a profile of the difference of the MLP output outnode minus // the true value of outnode vs the input value innode, for all test // data events. // The resulting TProfile histogram is returned. // It is not drawn if option "goff" is specified. // Options are passed to TProfile::Draw if (!fIOTree) GatherInformations(); TString pipehist=Form("MLP_truthdev_i%d_o%d", innode, outnode); TString drawline; drawline.Form("Out.Out%d-True.True%d:In.In%d>>", outnode, outnode, innode); fIOTree->Draw(drawline+pipehist+"(50)", "", "goff prof"); TProfile* h=(TProfile*)gROOT->FindObject(pipehist); h->SetDirectory(0); const char* titleInNeuron=GetInputNeuronTitle(innode); const char* titleOutNeuron=GetOutputNeuronTitle(outnode); h->SetTitle(Form("#Delta(output - truth) of %s vs. input %s", titleOutNeuron, titleInNeuron)); h->GetXaxis()->SetTitle(Form("%s", titleInNeuron)); h->GetYaxis()->SetTitle(Form("#Delta(output - truth) for %s", titleOutNeuron)); if (!strstr(option,"goff")) h->Draw(option); return h; } //______________________________________________________________________________ THStack* TMLPAnalyzer::DrawTruthDeviationInsOut(Int_t outnode /*=0*/, Option_t *option /*=""*/) { // Creates a profile of the difference of the MLP output outnode minus the // true value of outnode vs the input value, stacked for all inputs, for // all test data events. // The returned THStack contains all the TProfiles. It is drawn unless // the option "goff" is specified. // Options are passed to TProfile::Draw. TString sName; sName.Form("MLP_TruthDeviationIO_%d", outnode); const char* outputNodeTitle=GetOutputNeuronTitle(outnode); THStack *hs=new THStack(sName, Form("Deviation of MLP output %s from truth", outputNodeTitle)); // leg!=0 means we're drawing. TLegend *leg=0; if (!option || !strstr(option,"goff")) leg=new TLegend(.4,.75,.95,.95, Form("#Delta(output - truth) of %s vs. input for:", outputNodeTitle)); // create profile for each input neuron, // adding them into the THStack and the TLegend Int_t numInNodes=GetNeurons(1); Int_t innode=0; for (innode=0; innodeSetLineColor(1+innode); hs->Add(h, option); if (leg) leg->AddEntry(h,h->GetXaxis()->GetTitle()); } if (leg) { hs->Draw("nostack"); leg->Draw(); // gotta draw before accessing the axes hs->GetXaxis()->SetTitle("Input value"); hs->GetYaxis()->SetTitle(Form("#Delta(output - truth) for %s", outputNodeTitle)); } return hs; }