// @(#)root/physics:$Id$ // Author: Peter Malzacher 19/06/99 //______________________________________________________________________________ //*-*-*-*-*-*-*-*-*-*-*-*The Physics Vector package *-*-*-*-*-*-*-*-*-*-*-* //*-* ========================== * //*-* The Physics Vector package consists of five classes: * //*-* - TVector2 * //*-* - TVector3 * //*-* - TRotation * //*-* - TLorentzVector * //*-* - TLorentzRotation * //*-* It is a combination of CLHEPs Vector package written by * //*-* Leif Lonnblad, Andreas Nilsson and Evgueni Tcherniaev * //*-* and a ROOT package written by Pasha Murat. * //*-* for CLHEP see: http://wwwinfo.cern.ch/asd/lhc++/clhep/ * //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* //BEGIN_HTML
| xx xy xz xt |
|
|
| yx yy yz yt |
lambda = |
|
| zx zy zz zt |
|
|
| tx ty tz tt |
TLorentzRotation l; // l is
initialized as identity
TLorentzRotation m(l); // m = l
TRotation r;
TLorentzRotation lr(r);
TLorentzRotation lb1(bx,by,bz);
TVector3 b;
TLorentzRotation lb2(b);
The Matrix for a Lorentz boosts is:
| 1+gamma'*bx*bx gamma'*bx*by gamma'*bx*bz
gamma*bx |
| gamma'*by*bx 1+gamma'*by*by gamma'*by*bz
gamma*by |
| gamma'*bz*bx gamma'*bz*by 1+gamma'*bz*bz
gamma*bz |
| gamma*bx
gamma*by gamma*bz
gamma |
with the boost vector b=(bx,by,bz) and gamma=1/Sqrt(1-beta*beta) and gamma'=(gamma-1)/beta*beta.
Double_t xx;
TLorentzRotation l;
xx = l.XX(); // gets the xx component
xx = l(0,0); // gets the xx component
if (l==m) {...} // test for equality
if (l !=m) {...} // test for inequality
if (l.IsIdentity()) {...} // test for identity
TLorentzRotation a,b,c;
c = b*a; // product
c = a.MatrixMultiplication(b); // a is unchanged
a *= b; // Attention: a=a*b
c = a.Transform(b) // a=b*a then c=a
l1 = l2.Inverse(); // l1 is inverse of l2, l2 unchanged
l1 = l2.Invert(); // invert l2, then l1=l2
TLorentzVector v;
...
v=l.VectorMultiplication(v);
v = l * v;
v.Transform(l);
v *= l; // Attention v = l*v
END_HTML
//
#include "TError.h"
#include "TLorentzRotation.h"
ClassImp(TLorentzRotation)
TLorentzRotation::TLorentzRotation()
: fxx(1.0), fxy(0.0), fxz(0.0), fxt(0.0),
fyx(0.0), fyy(1.0), fyz(0.0), fyt(0.0),
fzx(0.0), fzy(0.0), fzz(1.0), fzt(0.0),
ftx(0.0), fty(0.0), ftz(0.0), ftt(1.0) {}
TLorentzRotation::TLorentzRotation(const TRotation & r)
: fxx(r.XX()), fxy(r.XY()), fxz(r.XZ()), fxt(0.0),
fyx(r.YX()), fyy(r.YY()), fyz(r.YZ()), fyt(0.0),
fzx(r.ZX()), fzy(r.ZY()), fzz(r.ZZ()), fzt(0.0),
ftx(0.0), fty(0.0), ftz(0.0), ftt(1.0) {}
TLorentzRotation::TLorentzRotation(const TLorentzRotation & r) : TObject(r),
fxx(r.fxx), fxy(r.fxy), fxz(r.fxz), fxt(r.fxt),
fyx(r.fyx), fyy(r.fyy), fyz(r.fyz), fyt(r.fyt),
fzx(r.fzx), fzy(r.fzy), fzz(r.fzz), fzt(r.fzt),
ftx(r.ftx), fty(r.fty), ftz(r.ftz), ftt(r.ftt) {}
TLorentzRotation::TLorentzRotation(
Double_t rxx, Double_t rxy, Double_t rxz, Double_t rxt,
Double_t ryx, Double_t ryy, Double_t ryz, Double_t ryt,
Double_t rzx, Double_t rzy, Double_t rzz, Double_t rzt,
Double_t rtx, Double_t rty, Double_t rtz, Double_t rtt)
: fxx(rxx), fxy(rxy), fxz(rxz), fxt(rxt),
fyx(ryx), fyy(ryy), fyz(ryz), fyt(ryt),
fzx(rzx), fzy(rzy), fzz(rzz), fzt(rzt),
ftx(rtx), fty(rty), ftz(rtz), ftt(rtt) {}
TLorentzRotation::TLorentzRotation(Double_t bx,
Double_t by,
Double_t bz)
{
//constructor
SetBoost(bx, by, bz);
}
TLorentzRotation::TLorentzRotation(const TVector3 & p) {
//copy constructor
SetBoost(p.X(), p.Y(), p.Z());
}
Double_t TLorentzRotation::operator () (int i, int j) const {
//derefencing operator
if (i == 0) {
if (j == 0) { return fxx; }
if (j == 1) { return fxy; }
if (j == 2) { return fxz; }
if (j == 3) { return fxt; }
} else if (i == 1) {
if (j == 0) { return fyx; }
if (j == 1) { return fyy; }
if (j == 2) { return fyz; }
if (j == 3) { return fyt; }
} else if (i == 2) {
if (j == 0) { return fzx; }
if (j == 1) { return fzy; }
if (j == 2) { return fzz; }
if (j == 3) { return fzt; }
} else if (i == 3) {
if (j == 0) { return ftx; }
if (j == 1) { return fty; }
if (j == 2) { return ftz; }
if (j == 3) { return ftt; }
}
Warning("operator()(i,j)","subscripting: bad indeces(%d,%d)",i,j);
return 0.0;
}
void TLorentzRotation::SetBoost(Double_t bx, Double_t by, Double_t bz) {
//boost this Lorentz vector
Double_t bp2 = bx*bx + by*by + bz*bz;
Double_t gamma = 1.0 / TMath::Sqrt(1.0 - bp2);
Double_t bgamma = gamma * gamma / (1.0 + gamma);
fxx = 1.0 + bgamma * bx * bx;
fyy = 1.0 + bgamma * by * by;
fzz = 1.0 + bgamma * bz * bz;
fxy = fyx = bgamma * bx * by;
fxz = fzx = bgamma * bx * bz;
fyz = fzy = bgamma * by * bz;
fxt = ftx = gamma * bx;
fyt = fty = gamma * by;
fzt = ftz = gamma * bz;
ftt = gamma;
}
TLorentzRotation TLorentzRotation::MatrixMultiplication(const TLorentzRotation & b) const {
//multiply this vector by a matrix
return TLorentzRotation(
fxx*b.fxx + fxy*b.fyx + fxz*b.fzx + fxt*b.ftx,
fxx*b.fxy + fxy*b.fyy + fxz*b.fzy + fxt*b.fty,
fxx*b.fxz + fxy*b.fyz + fxz*b.fzz + fxt*b.ftz,
fxx*b.fxt + fxy*b.fyt + fxz*b.fzt + fxt*b.ftt,
fyx*b.fxx + fyy*b.fyx + fyz*b.fzx + fyt*b.ftx,
fyx*b.fxy + fyy*b.fyy + fyz*b.fzy + fyt*b.fty,
fyx*b.fxz + fyy*b.fyz + fyz*b.fzz + fyt*b.ftz,
fyx*b.fxt + fyy*b.fyt + fyz*b.fzt + fyt*b.ftt,
fzx*b.fxx + fzy*b.fyx + fzz*b.fzx + fzt*b.ftx,
fzx*b.fxy + fzy*b.fyy + fzz*b.fzy + fzt*b.fty,
fzx*b.fxz + fzy*b.fyz + fzz*b.fzz + fzt*b.ftz,
fzx*b.fxt + fzy*b.fyt + fzz*b.fzt + fzt*b.ftt,
ftx*b.fxx + fty*b.fyx + ftz*b.fzx + ftt*b.ftx,
ftx*b.fxy + fty*b.fyy + ftz*b.fzy + ftt*b.fty,
ftx*b.fxz + fty*b.fyz + ftz*b.fzz + ftt*b.ftz,
ftx*b.fxt + fty*b.fyt + ftz*b.fzt + ftt*b.ftt);
}