// @(#)root/quadp:$Id$ // Author: Eddy Offermann May 2004 /************************************************************************* * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ /************************************************************************* * Parts of this file are copied from the OOQP distribution and * * are subject to the following license: * * * * COPYRIGHT 2001 UNIVERSITY OF CHICAGO * * * * The copyright holder hereby grants you royalty-free rights to use, * * reproduce, prepare derivative works, and to redistribute this software* * to others, provided that any changes are clearly documented. This * * software was authored by: * * * * E. MICHAEL GERTZ gertz@mcs.anl.gov * * Mathematics and Computer Science Division * * Argonne National Laboratory * * 9700 S. Cass Avenue * * Argonne, IL 60439-4844 * * * * STEPHEN J. WRIGHT swright@cs.wisc.edu * * Computer Sciences Department * * University of Wisconsin * * 1210 West Dayton Street * * Madison, WI 53706 FAX: (608)262-9777 * * * * Any questions or comments may be directed to one of the authors. * * * * ARGONNE NATIONAL LABORATORY (ANL), WITH FACILITIES IN THE STATES OF * * ILLINOIS AND IDAHO, IS OWNED BY THE UNITED STATES GOVERNMENT, AND * * OPERATED BY THE UNIVERSITY OF CHICAGO UNDER PROVISION OF A CONTRACT * * WITH THE DEPARTMENT OF ENERGY. * *************************************************************************/ #include "Riostream.h" #include "TQpDataSparse.h" ////////////////////////////////////////////////////////////////////////// // // // TQpDataSparse // // // // Data for the sparse QP formulation // // // ////////////////////////////////////////////////////////////////////////// ClassImp(TQpDataSparse) //______________________________________________________________________________ TQpDataSparse::TQpDataSparse(Int_t nx,Int_t my,Int_t mz) : TQpDataBase(nx,my,mz) { // Constructor fQ.ResizeTo(fNx,fNx); fA.ResizeTo(fMy,fNx); fC.ResizeTo(fMz,fNx); } //______________________________________________________________________________ TQpDataSparse::TQpDataSparse(TVectorD &c_in, TMatrixDSparse &Q_in, TVectorD &xlow_in,TVectorD &ixlow_in, TVectorD &xupp_in,TVectorD &ixupp_in, TMatrixDSparse &A_in, TVectorD &bA_in, TMatrixDSparse &C_in, TVectorD &clow_in,TVectorD &iclow_in, TVectorD &cupp_in,TVectorD &icupp_in) { // Constructor fG .ResizeTo(c_in) ; fG = c_in; fBa .ResizeTo(bA_in) ; fBa = bA_in; fXloBound.ResizeTo(xlow_in) ; fXloBound = xlow_in; fXloIndex.ResizeTo(ixlow_in); fXloIndex = ixlow_in; fXupBound.ResizeTo(xupp_in) ; fXupBound = xupp_in; fXupIndex.ResizeTo(ixupp_in); fXupIndex = ixupp_in; fCloBound.ResizeTo(clow_in) ; fCloBound = clow_in; fCloIndex.ResizeTo(iclow_in); fCloIndex = iclow_in; fCupBound.ResizeTo(cupp_in) ; fCupBound = cupp_in; fCupIndex.ResizeTo(icupp_in); fCupIndex = icupp_in; fNx = fG.GetNrows(); fQ.Use(Q_in); if (A_in.GetNrows() > 0) { fA.Use(A_in); fMy = fA.GetNrows(); } else fMy = 0; if (C_in.GetNrows()) { fC.Use(C_in); fMz = fC.GetNrows(); } else fMz = 0; // fQ.Print(); // fA.Print(); // fC.Print(); // printf("fNx: %d\n",fNx); // printf("fMy: %d\n",fMy); // printf("fMz: %d\n",fMz); } //______________________________________________________________________________ TQpDataSparse::TQpDataSparse(const TQpDataSparse &another) : TQpDataBase(another) { // Copy constructor *this = another; } //______________________________________________________________________________ void TQpDataSparse::SetNonZeros(Int_t nnzQ,Int_t nnzA,Int_t nnzC) { // Allocate space for the appropriate number of non-zeros in the matrices fQ.SetSparseIndex(nnzQ); fA.SetSparseIndex(nnzA); fC.SetSparseIndex(nnzC); } //______________________________________________________________________________ void TQpDataSparse::Qmult(Double_t beta,TVectorD &y,Double_t alpha,const TVectorD &x ) { // calculate y = beta*y + alpha*(fQ*x) y *= beta; if (fQ.GetNoElements() > 0) y += alpha*(fQ*x); } //______________________________________________________________________________ void TQpDataSparse::Amult(Double_t beta,TVectorD &y,Double_t alpha,const TVectorD &x) { // calculate y = beta*y + alpha*(fA*x) y *= beta; if (fA.GetNoElements() > 0) y += alpha*(fA*x); } //______________________________________________________________________________ void TQpDataSparse::Cmult(Double_t beta,TVectorD &y,Double_t alpha,const TVectorD &x) { // calculate y = beta*y + alpha*(fC*x) y *= beta; if (fC.GetNoElements() > 0) y += alpha*(fC*x); } //______________________________________________________________________________ void TQpDataSparse::ATransmult(Double_t beta,TVectorD &y,Double_t alpha,const TVectorD &x) { // calculate y = beta*y + alpha*(fA^T*x) y *= beta; if (fA.GetNoElements() > 0) y += alpha*(TMatrixDSparse(TMatrixDSparse::kTransposed,fA)*x); } //______________________________________________________________________________ void TQpDataSparse::CTransmult(Double_t beta,TVectorD &y,Double_t alpha,const TVectorD &x) { // calculate y = beta*y + alpha*(fC^T*x) y *= beta; if (fC.GetNoElements() > 0) y += alpha*(TMatrixDSparse(TMatrixDSparse::kTransposed,fC)*x); } //______________________________________________________________________________ Double_t TQpDataSparse::DataNorm() { // Return the largest component of several vectors in the data class Double_t norm = 0.0; Double_t componentNorm = fG.NormInf(); if (componentNorm > norm) norm = componentNorm; TMatrixDSparse fQ_abs(fQ); componentNorm = (fQ_abs.Abs()).Max(); if (componentNorm > norm) norm = componentNorm; componentNorm = fBa.NormInf(); if (componentNorm > norm) norm = componentNorm; TMatrixDSparse fA_abs(fA); componentNorm = (fA_abs.Abs()).Max(); if (componentNorm > norm) norm = componentNorm; TMatrixDSparse fC_abs(fC); componentNorm = (fC_abs.Abs()).Max(); if (componentNorm > norm) norm = componentNorm; R__ASSERT(fXloBound.MatchesNonZeroPattern(fXloIndex)); componentNorm = fXloBound.NormInf(); if (componentNorm > norm) norm = componentNorm; R__ASSERT(fXupBound.MatchesNonZeroPattern(fXupIndex)); componentNorm = fXupBound.NormInf(); if (componentNorm > norm) norm = componentNorm; R__ASSERT(fCloBound.MatchesNonZeroPattern(fCloIndex)); componentNorm = fCloBound.NormInf(); if (componentNorm > norm) norm = componentNorm; R__ASSERT(fCupBound.MatchesNonZeroPattern(fCupIndex)); componentNorm = fCupBound.NormInf(); if (componentNorm > norm) norm = componentNorm; return norm; } //______________________________________________________________________________ void TQpDataSparse::Print(Option_t * /*opt*/) const { // Print class members fQ.Print("Q"); fG.Print("c"); fXloBound.Print("xlow"); fXloIndex.Print("ixlow"); fXupBound.Print("xupp"); fXupIndex.Print("ixupp"); fA.Print("A"); fBa.Print("b"); fC.Print("C"); fCloBound.Print("clow"); fCloIndex.Print("iclow"); fCupBound.Print("cupp"); fCupIndex.Print("icupp"); } //______________________________________________________________________________ void TQpDataSparse::PutQIntoAt(TMatrixDBase &m,Int_t row,Int_t col) { // Insert the Hessian Q into the matrix M at index (row,col) for the fundamental // linear system m.SetSub(row,col,fQ); } //______________________________________________________________________________ void TQpDataSparse::PutAIntoAt(TMatrixDBase &m,Int_t row,Int_t col) { // Insert the constraint matrix A into the matrix M at index (row,col) for the fundamental // linear system m.SetSub(row,col,fA); } //______________________________________________________________________________ void TQpDataSparse::PutCIntoAt(TMatrixDBase &m,Int_t row,Int_t col) { // Insert the constraint matrix C into the matrix M at index (row,col) for the fundamental // linear system m.SetSub(row,col,fC); } //______________________________________________________________________________ void TQpDataSparse::GetDiagonalOfQ(TVectorD &dq) { // Return in vector dq the diagonal of matrix fQ const Int_t n = TMath::Min(fQ.GetNrows(),fQ.GetNcols()); dq.ResizeTo(n); dq = TMatrixDSparseDiag(fQ); } //______________________________________________________________________________ Double_t TQpDataSparse::ObjectiveValue(TQpVar *vars) { // Return value of the objective function TVectorD tmp(fG); this->Qmult(1.0,tmp,0.5,vars->fX); return tmp*vars->fX; } //______________________________________________________________________________ void TQpDataSparse::DataRandom(TVectorD &x,TVectorD &y,TVectorD &z,TVectorD &s) { // Choose randomly a QP problem Double_t ix = 3074.20374; TVectorD xdual(fNx); this->RandomlyChooseBoundedVariables(x,xdual,fXloBound,fXloIndex,fXupBound,fXupIndex,ix,.25,.25,.25); TVectorD sprime(fMz); this->RandomlyChooseBoundedVariables(sprime,z,fCloBound,fCloIndex,fCupBound,fCupIndex,ix,.25,.25,.5); fQ.RandomizePD(0.0,1.0,ix); fA.Randomize(-10.0,10.0,ix); fC.Randomize(-10.0,10.0,ix); y .Randomize(-10.0,10.0,ix); // fG = - fQ x + A^T y + C^T z + xdual fG = xdual; fG -= fQ*x; fG += TMatrixDSparse(TMatrixDSparse::kTransposed,fA)*y; fG += TMatrixDSparse(TMatrixDSparse::kTransposed,fC)*z; fBa = fA*x; s = fC*x; // Now compute the real q = s-sprime const TVectorD q = s-sprime; // Adjust fCloBound and fCupBound appropriately Add(fCloBound,1.0,q); Add(fCupBound,1.0,q); fCloBound.SelectNonZeros(fCloIndex); fCupBound.SelectNonZeros(fCupIndex); } //______________________________________________________________________________ TQpDataSparse &TQpDataSparse::operator=(const TQpDataSparse &source) { // Assignment operator if (this != &source) { TQpDataBase::operator=(source); fQ.ResizeTo(source.fQ); fQ = source.fQ; fA.ResizeTo(source.fA); fA = source.fA; fC.ResizeTo(source.fC); fC = source.fC; } return *this; }