/***************************************************************************** * Project: RooFit * * Package: RooFitCore * * @(#)root/roofitcore:$Id$ * Authors: * * WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu * * DK, David Kirkby, UC Irvine, dkirkby@uci.edu * * * * Copyright (c) 2000-2005, Regents of the University of California * * and Stanford University. All rights reserved. * * * * Redistribution and use in source and binary forms, * * with or without modification, are permitted according to the terms * * listed in LICENSE (http://roofit.sourceforge.net/license.txt) * *****************************************************************************/ // -- CLASS DESCRIPTION [MISC] -- // RooMath is a singleton class implementing various mathematical // functions not found in TMath, mostly involving complex algebra // // #include #include #include #include "RooFit.h" #include "RooMath.h" #include "Riostream.h" #include "RooMsgService.h" using namespace std; ClassImp(RooMath) ; namespace faddeeva_impl { static inline void cexp(double& re, double& im) { // with gcc on unix machines and on x86_64, we can gain by hand-coding // exp(z) for the x87 coprocessor; other platforms have the default // routines as fallback implementation, and compilers other than gcc on // x86_64 generate better code with the default routines; also avoid // the inline assembly code when the copiler is not optimising code, or // is optimising for code size // (we insist on __unix__ here, since the assemblers on other OSs // typically do not speak AT&T syntax as gas does...) #if !defined(__GNUC__) || !defined(__unix__) || !defined(__x86_64__) || \ !defined(__OPTIMIZE__) || defined(__OPTIMIZE_SIZE__) || \ defined(__INTEL_COMPILER) || defined(__clang__) || \ defined(__OPEN64__) || defined(__PATHSCALE__) const double e = std::exp(re); re = e * std::cos(im); im = e * std::sin(im); #else __asm__ ( "fxam\n\t" // examine st(0): NaN? Inf? "fstsw %%ax\n\t" "movb $0x45,%%dh\n\t" "andb %%ah,%%dh\n\t" "cmpb $0x05,%%dh\n\t" "jz 1f\n\t" // have NaN or infinity, handle below "fldl2e\n\t" // load log2(e) "fmulp\n\t" // re * log2(e) "fld %%st(0)\n\t" // duplicate re * log2(e) "frndint\n\t" // int(re * log2(e)) "fsubr %%st,%%st(1)\n\t" // st(1) = x = frac(re * log2(e)) "fxch\n\t" // swap st(0), st(1) "f2xm1\n\t" // 2^x - 1 "fld1\n\t" // st(0) = 1 "faddp\n\t" // st(0) = 2^x "fscale\n\t" // 2 ^ (int(re * log2(e)) + x) "fstp %%st(1)\n\t" // pop st(1) "jmp 2f\n\t" "1:\n\t" // handle NaN, Inf... "testl $0x200, %%eax\n\t"// -infinity? "jz 2f\n\t" "fstp %%st\n\t" // -Inf, so pop st(0) "fldz\n\t" // st(0) = 0 "2:\n\t" // here. we have st(0) == exp(re) "fxch\n\t" // st(0) = im, st(1) = exp(re) "fsincos\n\t" // st(0) = cos(im), st(1) = sin(im) "fnstsw %%ax\n\t" "testl $0x400,%%eax\n\t" "jz 4f\n\t" // |im| too large for fsincos? "fldpi\n\t" // st(0) = pi "fadd %%st(0)\n\t" // st(0) *= 2; "fxch %%st(1)\n\t" // st(0) = im, st(1) = 2 * pi "3:\n\t" "fprem1\n\t" // st(0) = fmod(im, 2 * pi) "fnstsw %%ax\n\t" "testl $0x400,%%eax\n\t" "jnz 3b\n\t" // fmod done? "fstp %%st(1)\n\t" // yes, pop st(1) == 2 * pi "fsincos\n\t" // st(0) = cos(im), st(1) = sin(im) "4:\n\t" // all fine, fsincos succeeded "fmul %%st(2)\n\t" // st(0) *= st(2) "fxch %%st(2)\n\t" // st(2)=exp(re)*cos(im),st(0)=exp(im) "fmulp %%st(1)\n\t" // st(1)=exp(re)*sin(im), pop st(0) : "=t" (im), "=u" (re): "0" (re), "1" (im) : "eax", "dh", "cc", "st(5)", "st(6)", "st(7)"); #endif } template static inline std::complex faddeeva_smabmq_impl( T zre, T zim, const T tm, const T (&a)[N], const T (&npi)[N], const T (&taylorarr)[N * NTAYLOR * 2]) { // catch singularities in the Fourier representation At // z = n pi / tm, and provide a Taylor series expansion in those // points, and only use it when we're close enough to the real axis // that there is a chance we need it const T zim2 = zim * zim; const T maxnorm = T(9) / T(1000000); if (zim2 < maxnorm) { // we're close enough to the real axis that we need to worry about // singularities const T dnsing = tm * zre / npi[1]; const T dnsingmax2 = (T(N) - T(1) / T(2)) * (T(N) - T(1) / T(2)); if (dnsing * dnsing < dnsingmax2) { // we're in the interesting range of the real axis as well... // deal with Re(z) < 0 so we only need N different Taylor // expansions; use w(-x+iy) = conj(w(x+iy)) const bool negrez = zre < T(0); // figure out closest singularity const int nsing = int(std::abs(dnsing) + T(1) / T(2)); // and calculate just how far we are from it const T zmnpire = std::abs(zre) - npi[nsing]; const T zmnpinorm = zmnpire * zmnpire + zim2; // close enough to one of the singularities? if (zmnpinorm < maxnorm) { const T* coeffs = &taylorarr[nsing * NTAYLOR * 2]; // calculate value of taylor expansion... // (note: there's no chance to vectorize this one, since // the value of the next iteration depend on the ones from // the previous iteration) T sumre = coeffs[0], sumim = coeffs[1]; for (unsigned i = 1; i < NTAYLOR; ++i) { const T re = sumre * zmnpire - sumim * zim; const T im = sumim * zmnpire + sumre * zim; sumre = re + coeffs[2 * i + 0]; sumim = im + coeffs[2 * i + 1]; } // undo the flip in real part of z if needed if (negrez) return std::complex(sumre, -sumim); else return std::complex(sumre, sumim); } } } // negative Im(z) is treated by calculating for -z, and using the // symmetry properties of erfc(z) const bool negimz = zim < T(0); if (negimz) { zre = -zre; zim = -zim; } const T znorm = zre * zre + zim2; if (znorm > tm * tm) { // use continued fraction approximation for |z| large const T isqrtpi = 5.64189583547756287e-01; const T z2re = (zre + zim) * (zre - zim); const T z2im = T(2) * zre * zim; T cfre = T(1), cfim = T(0), cfnorm = T(1); for (unsigned k = NCF; k; --k) { cfre = +(T(k) / T(2)) * cfre / cfnorm; cfim = -(T(k) / T(2)) * cfim / cfnorm; if (k & 1) cfre -= z2re, cfim -= z2im; else cfre += T(1); cfnorm = cfre * cfre + cfim * cfim; } T sumre = (zim * cfre - zre * cfim) * isqrtpi / cfnorm; T sumim = -(zre * cfre + zim * cfim) * isqrtpi / cfnorm; if (negimz) { // use erfc(-z) = 2 - erfc(z) to get good accuracy for // Im(z) < 0: 2 / exp(z^2) - w(z) T ez2re = -z2re, ez2im = -z2im; faddeeva_impl::cexp(ez2re, ez2im); return std::complex(T(2) * ez2re - sumre, T(2) * ez2im - sumim); } else { return std::complex(sumre, sumim); } } const T twosqrtpi = 3.54490770181103205e+00; const T tmzre = tm * zre, tmzim = tm * zim; // calculate exp(i tm z) T eitmzre = -tmzim, eitmzim = tmzre; faddeeva_impl::cexp(eitmzre, eitmzim); // form 1 +/- exp (i tm z) const T numerarr[4] = { T(1) - eitmzre, -eitmzim, T(1) + eitmzre, +eitmzim }; // form tm z * (1 +/- exp(i tm z)) const T numertmz[4] = { tmzre * numerarr[0] - tmzim * numerarr[1], tmzre * numerarr[1] + tmzim * numerarr[0], tmzre * numerarr[2] - tmzim * numerarr[3], tmzre * numerarr[3] + tmzim * numerarr[2] }; // common subexpressions for use inside the loop const T reimtmzm2 = T(-2) * tmzre * tmzim; const T imtmz2 = tmzim * tmzim; const T reimtmzm22 = reimtmzm2 * reimtmzm2; // on non-x86_64 architectures, when the compiler is producing // unoptimised code and when optimising for code size, we use the // straightforward implementation, but for x86_64, we use the // brainf*cked code below that the gcc vectorizer likes to gain a few // clock cycles; non-gcc compilers also get the normal code, since they // usually do a better job with the default code (and yes, it's a pain // that they're all pretending to be gcc) #if (!defined(__x86_64__)) || !defined(__OPTIMIZE__) || \ defined(__OPTIMIZE_SIZE__) || defined(__INTEL_COMPILER) || \ defined(__clang__) || defined(__OPEN64__) || \ defined(__PATHSCALE__) || !defined(__GNUC__) T sumre = (-a[0] / znorm) * (numerarr[0] * zre + numerarr[1] * zim); T sumim = (-a[0] / znorm) * (numerarr[1] * zre - numerarr[0] * zim); for (unsigned i = 0; i < N; ++i) { const unsigned j = (i << 1) & 2; // denominator const T wk = imtmz2 + (npi[i] + tmzre) * (npi[i] - tmzre); // norm of denominator const T norm = wk * wk + reimtmzm22; const T f = T(2) * tm * a[i] / norm; // sum += a[i] * numer / wk sumre -= f * (numertmz[j] * wk + numertmz[j + 1] * reimtmzm2); sumim -= f * (numertmz[j + 1] * wk - numertmz[j] * reimtmzm2); } #else // BEGIN fully vectorisable code - enjoy reading... ;) T tmp[2 * N]; for (unsigned i = 0; i < N; ++i) { const T wk = imtmz2 + (npi[i] + tmzre) * (npi[i] - tmzre); tmp[2 * i + 0] = wk; tmp[2 * i + 1] = T(2) * tm * a[i] / (wk * wk + reimtmzm22); } for (unsigned i = 0; i < N / 2; ++i) { T wk = tmp[4 * i + 0], f = tmp[4 * i + 1]; tmp[4 * i + 0] = -f * (numertmz[0] * wk + numertmz[1] * reimtmzm2); tmp[4 * i + 1] = -f * (numertmz[1] * wk - numertmz[0] * reimtmzm2); wk = tmp[4 * i + 2], f = tmp[4 * i + 3]; tmp[4 * i + 2] = -f * (numertmz[2] * wk + numertmz[3] * reimtmzm2); tmp[4 * i + 3] = -f * (numertmz[3] * wk - numertmz[2] * reimtmzm2); } if (N & 1) { // we may have missed one element in the last loop; if so, process // it now... const T wk = tmp[2 * N - 2], f = tmp[2 * N - 1]; tmp[2 * (N - 1) + 0] = -f * (numertmz[0] * wk + numertmz[1] * reimtmzm2); tmp[2 * (N - 1) + 1] = -f * (numertmz[1] * wk - numertmz[0] * reimtmzm2); } T sumre = (-a[0] / znorm) * (numerarr[0] * zre + numerarr[1] * zim); T sumim = (-a[0] / znorm) * (numerarr[1] * zre - numerarr[0] * zim); for (unsigned i = 0; i < N; ++i) { sumre += tmp[2 * i + 0]; sumim += tmp[2 * i + 1]; } // END fully vectorisable code #endif // prepare the result if (negimz) { // use erfc(-z) = 2 - erfc(z) to get good accuracy for // Im(z) < 0: 2 / exp(z^2) - w(z) const T z2im = -T(2) * zre * zim; const T z2re = -(zre + zim) * (zre - zim); T ez2re = z2re, ez2im = z2im; faddeeva_impl::cexp(ez2re, ez2im); return std::complex(T(2) * ez2re + sumim / twosqrtpi, T(2) * ez2im - sumre / twosqrtpi); } else { return std::complex(-sumim / twosqrtpi, sumre / twosqrtpi); } } static const double npi24[24] = { // precomputed values n * pi 0.00000000000000000e+00, 3.14159265358979324e+00, 6.28318530717958648e+00, 9.42477796076937972e+00, 1.25663706143591730e+01, 1.57079632679489662e+01, 1.88495559215387594e+01, 2.19911485751285527e+01, 2.51327412287183459e+01, 2.82743338823081391e+01, 3.14159265358979324e+01, 3.45575191894877256e+01, 3.76991118430775189e+01, 4.08407044966673121e+01, 4.39822971502571053e+01, 4.71238898038468986e+01, 5.02654824574366918e+01, 5.34070751110264851e+01, 5.65486677646162783e+01, 5.96902604182060715e+01, 6.28318530717958648e+01, 6.59734457253856580e+01, 6.91150383789754512e+01, 7.22566310325652445e+01, }; static const double a24[24] = { // precomputed Fourier coefficient prefactors 2.95408975150919338e-01, 2.75840233292177084e-01, 2.24573955224615866e-01, 1.59414938273911723e-01, 9.86657664154541891e-02, 5.32441407876394120e-02, 2.50521500053936484e-02, 1.02774656705395362e-02, 3.67616433284484706e-03, 1.14649364124223317e-03, 3.11757015046197600e-04, 7.39143342960301488e-05, 1.52794934280083635e-05, 2.75395660822107093e-06, 4.32785878190124505e-07, 5.93003040874588103e-08, 7.08449030774820423e-09, 7.37952063581678038e-10, 6.70217160600200763e-11, 5.30726516347079017e-12, 3.66432411346763916e-13, 2.20589494494103134e-14, 1.15782686262855879e-15, 5.29871142946730482e-17, }; static const double taylorarr24[24 * 12] = { // real part imaginary part, low order coefficients last // nsing = 0 0.00000000000000000e-00, 3.00901111225470020e-01, 5.00000000000000000e-01, 0.00000000000000000e-00, 0.00000000000000000e-00, -7.52252778063675049e-01, -1.00000000000000000e-00, 0.00000000000000000e-00, 0.00000000000000000e-00, 1.12837916709551257e+00, 1.00000000000000000e-00, 0.00000000000000000e-00, // nsing = 1 -2.22423508493755319e-01, 1.87966717746229718e-01, 3.41805419240637628e-01, 3.42752593807919263e-01, 4.66574321730757753e-01, -5.59649213591058097e-01, -8.05759710273191021e-01, -5.38989366115424093e-01, -4.88914083733395200e-01, 9.80580906465856792e-01, 9.33757118080975970e-01, 2.82273885115127769e-01, // nsing = 2 -2.60522586513312894e-01, -4.26259455096092786e-02, 1.36549702008863349e-03, 4.39243227763478846e-01, 6.50591493715480700e-01, -1.23422352472779046e-01, -3.43379903564271318e-01, -8.13862662890748911e-01, -7.96093943501906645e-01, 6.11271022503935772e-01, 7.60213717643090957e-01, 4.93801903948967945e-01, // nsing = 3 -1.18249853727020186e-01, -1.90471659765411376e-01, -2.59044664869706839e-01, 2.69333898502392004e-01, 4.99077838344125714e-01, 2.64644800189075006e-01, 1.26114512111568737e-01, -7.46519337025968199e-01, -8.47666863706379907e-01, 1.89347715957263646e-01, 5.39641485816297176e-01, 5.97805988669631615e-01, // nsing = 4 4.94825297066481491e-02, -1.71428212158876197e-01, -2.97766677111471585e-01, 1.60773286596649656e-02, 1.88114210832460682e-01, 4.11734391195006462e-01, 3.98540613293909842e-01, -4.63321903522162715e-01, -6.99522070542463639e-01, -1.32412024008354582e-01, 3.33997185986131785e-01, 6.01983450812696742e-01, // nsing = 5 1.18367078448232332e-01, -6.09533063579086850e-02, -1.74762998833038991e-01, -1.39098099222000187e-01, -6.71534655984154549e-02, 3.34462251996496680e-01, 4.37429678577360024e-01, -1.59613865629038012e-01, -4.71863911886034656e-01, -2.92759316465055762e-01, 1.80238737704018306e-01, 5.42834914744283253e-01, // nsing = 6 8.87698096005701290e-02, 2.84339354980994902e-02, -3.18943083830766399e-02, -1.53946887977045862e-01, -1.71825061547624858e-01, 1.70734367410600348e-01, 3.33690792296469441e-01, 3.97048587678703930e-02, -2.66422678503135697e-01, -3.18469797424381480e-01, 8.48049724711137773e-02, 4.60546329221462864e-01, // nsing = 7 2.99767046276705077e-02, 5.34659695701718247e-02, 4.53131030251822568e-02, -9.37915401977138648e-02, -1.57982359988083777e-01, 3.82170507060760740e-02, 1.98891589845251706e-01, 1.17546677047049354e-01, -1.27514335237079297e-01, -2.72741112680307074e-01, 3.47906344595283767e-02, 3.82277517244493224e-01, // nsing = 8 -7.35922494437203395e-03, 3.72011290318534610e-02, 5.66783220847204687e-02, -3.21015398169199501e-02, -1.00308737825172555e-01, -2.57695148077963515e-02, 9.67294850588435368e-02, 1.18174625238337507e-01, -5.21266530264988508e-02, -2.08850084114630861e-01, 1.24443217440050976e-02, 3.19239968065752286e-01, // nsing = 9 -1.66126772808035320e-02, 1.46180329587665321e-02, 3.85927576915247303e-02, 1.18910471133003227e-03, -4.94003498320899806e-02, -3.93468443660139110e-02, 3.92113167048952835e-02, 9.03306084789976219e-02, -1.82889636251263500e-02, -1.53816215444915245e-01, 3.88103861995563741e-03, 2.72090310854550347e-01, // nsing = 10 -1.21245068916826880e-02, 1.59080224420074489e-03, 1.91116222508366035e-02, 1.05879549199053302e-02, -1.97228428219695318e-02, -3.16962067712639397e-02, 1.34110372628315158e-02, 6.18045654429108837e-02, -5.52574921865441838e-03, -1.14259663804569455e-01, 1.05534036292203489e-03, 2.37326534898818288e-01, // nsing = 11 -5.96835002183177493e-03, -2.42594931567031205e-03, 7.44753817476594184e-03, 9.33450807578394386e-03, -6.52649522783026481e-03, -2.08165802069352019e-02, 3.89988065678848650e-03, 4.12784313451549132e-02, -1.44110721106127920e-03, -8.76484782997757425e-02, 2.50210184908121337e-04, 2.11131066219336647e-01, // nsing = 12 -2.24505212235034193e-03, -2.38114524227619446e-03, 2.36375918970809340e-03, 5.97324040603806266e-03, -1.81333819936645381e-03, -1.28126250720444051e-02, 9.69251586187208358e-04, 2.83055679874589732e-02, -3.24986363596307374e-04, -6.97056268370209313e-02, 5.17231862038123061e-05, 1.90681117197597520e-01, // nsing = 13 -6.76887607549779069e-04, -1.48589685249767064e-03, 6.22548369472046953e-04, 3.43871156746448680e-03, -4.26557147166379929e-04, -7.98854145009655400e-03, 2.06644460919535524e-04, 2.03107152586353217e-02, -6.34563929410856987e-05, -5.71425144910115832e-02, 9.32252179140502456e-06, 1.74167663785025829e-01, // nsing = 14 -1.67596437777156162e-04, -8.05384193869903178e-04, 1.37627277777023791e-04, 1.97652692602724093e-03, -8.54392244879459717e-05, -5.23088906415977167e-03, 3.78965577556493513e-05, 1.52191559129376333e-02, -1.07393019498185646e-05, -4.79347862153366295e-02, 1.46503970628861795e-06, 1.60471011683477685e-01, // nsing = 15 -3.45715760630978778e-05, -4.31089554210205493e-04, 2.57350138106549737e-05, 1.19449262097417514e-03, -1.46322227517372253e-05, -3.61303766799909378e-03, 5.99057675687392260e-06, 1.17993805017130890e-02, -1.57660578509526722e-06, -4.09165023743669707e-02, 2.00739683204152177e-07, 1.48879348585662670e-01, // nsing = 16 -5.99735188857573424e-06, -2.42949218855805052e-04, 4.09249090936269722e-06, 7.67400152727128171e-04, -2.14920611287648034e-06, -2.60710519575546230e-03, 8.17591694958640978e-07, 9.38581640137393053e-03, -2.00910914042737743e-07, -3.54045580123653803e-02, 2.39819738182594508e-08, 1.38916449405613711e-01, // nsing = 17 -8.80708505155966658e-07, -1.46479474515521504e-04, 5.55693207391871904e-07, 5.19165587844615415e-04, -2.71391142598826750e-07, -1.94439427580099576e-03, 9.64641799864928425e-08, 7.61536975207357980e-03, -2.22357616069432967e-08, -3.09762939485679078e-02, 2.49806920458212581e-09, 1.30247401712293206e-01, // nsing = 18 -1.10007111030476390e-07, -9.35886150886691786e-05, 6.46244096997824390e-08, 3.65267193418479043e-04, -2.95175785569292542e-08, -1.48730955943961081e-03, 9.84949251974795537e-09, 6.27824679148707177e-03, -2.13827217704781576e-09, -2.73545766571797965e-02, 2.26877724435352177e-10, 1.22627158810895267e-01, // nsing = 19 -1.17302439957657553e-08, -6.24890956722053332e-05, 6.45231881609786173e-09, 2.64799907072561543e-04, -2.76943921343331654e-09, -1.16094187847598385e-03, 8.71074689656480749e-10, 5.24514377390761210e-03, -1.78730768958639407e-10, -2.43489203319091538e-02, 1.79658223341365988e-11, 1.15870972518909888e-01, // nsing = 20 -1.07084502471985403e-09, -4.31515421260633319e-05, 5.54152563270547927e-10, 1.96606443937168357e-04, -2.24423474431542338e-10, -9.21550077887211094e-04, 6.67734377376211580e-11, 4.43201203646827019e-03, -1.29896907717633162e-11, -2.18236356404862774e-02, 1.24042409733678516e-12, 1.09836276968151848e-01, // nsing = 21 -8.38816525569060600e-11, -3.06091807093959821e-05, 4.10033961556230842e-11, 1.48895624771753491e-04, -1.57238128435253905e-11, -7.42073499862065649e-04, 4.43938379112418832e-12, 3.78197089773957382e-03, -8.21067867869285873e-13, -1.96793607299577220e-02, 7.46725770201828754e-14, 1.04410965521273064e-01, // nsing = 22 -5.64848922712870507e-12, -2.22021942382507691e-05, 2.61729537775838587e-12, 1.14683068921649992e-04, -9.53316139085394895e-13, -6.05021573565916914e-04, 2.56116039498542220e-13, 3.25530796858307225e-03, -4.51482829896525004e-14, -1.78416955716514289e-02, 3.91940313268087086e-15, 9.95054815464739996e-02, // nsing = 23 -3.27482357793897640e-13, -1.64138890390689871e-05, 1.44278798346454523e-13, 8.96362542918265398e-05, -5.00524303437266481e-14, -4.98699756861136127e-04, 1.28274026095767213e-14, 2.82359118537843949e-03, -2.16009593993917109e-15, -1.62538825704327487e-02, 1.79368667683853708e-16, 9.50473084594884184e-02 }; const double npi11[11] = { // precomputed values n * pi 0.00000000000000000e+00, 3.14159265358979324e+00, 6.28318530717958648e+00, 9.42477796076937972e+00, 1.25663706143591730e+01, 1.57079632679489662e+01, 1.88495559215387594e+01, 2.19911485751285527e+01, 2.51327412287183459e+01, 2.82743338823081391e+01, 3.14159265358979324e+01 }; const double a11[11] = { // precomputed Fourier coefficient prefactors 4.43113462726379007e-01, 3.79788034073635143e-01, 2.39122407410867584e-01, 1.10599187402169792e-01, 3.75782250080904725e-02, 9.37936104296856288e-03, 1.71974046186334976e-03, 2.31635559000523461e-04, 2.29192401420125452e-05, 1.66589592139340077e-06, 8.89504561311882155e-08 }; const double taylorarr11[11 * 6] = { // real part imaginary part, low order coefficients last // nsing = 0 -1.00000000000000000e+00, 0.00000000000000000e+00, 0.00000000000000000e-01, 1.12837916709551257e+00, 1.00000000000000000e+00, 0.00000000000000000e+00, // nsing = 1 -5.92741768247463996e-01, -7.19914991991294310e-01, -6.73156763521649944e-01, 8.14025039279059577e-01, 8.57089811121701143e-01, 4.00248106586639754e-01, // nsing = 2 1.26114512111568737e-01, -7.46519337025968199e-01, -8.47666863706379907e-01, 1.89347715957263646e-01, 5.39641485816297176e-01, 5.97805988669631615e-01, // nsing = 3 4.43238482668529408e-01, -3.03563167310638372e-01, -5.88095866853990048e-01, -2.32638360700858412e-01, 2.49595637924601714e-01, 5.77633779156009340e-01, // nsing = 4 3.33690792296469441e-01, 3.97048587678703930e-02, -2.66422678503135697e-01, -3.18469797424381480e-01, 8.48049724711137773e-02, 4.60546329221462864e-01, // nsing = 5 1.42043544696751869e-01, 1.24094227867032671e-01, -8.31224229982140323e-02, -2.40766729258442100e-01, 2.11669512031059302e-02, 3.48650139549945097e-01, // nsing = 6 3.92113167048952835e-02, 9.03306084789976219e-02, -1.82889636251263500e-02, -1.53816215444915245e-01, 3.88103861995563741e-03, 2.72090310854550347e-01, // nsing = 7 7.37741897722738503e-03, 5.04625223970221539e-02, -2.87394336989990770e-03, -9.96122819257496929e-02, 5.22745478269428248e-04, 2.23361039070072101e-01, // nsing = 8 9.69251586187208358e-04, 2.83055679874589732e-02, -3.24986363596307374e-04, -6.97056268370209313e-02, 5.17231862038123061e-05, 1.90681117197597520e-01, // nsing = 9 9.01625563468897100e-05, 1.74961124275657019e-02, -2.65745127697337342e-05, -5.22070356354932341e-02, 3.75952450449939411e-06, 1.67018782142871146e-01, // nsing = 10 5.99057675687392260e-06, 1.17993805017130890e-02, -1.57660578509526722e-06, -4.09165023743669707e-02, 2.00739683204152177e-07, 1.48879348585662670e-01 }; } std::complex RooMath::faddeeva(std::complex z) { return faddeeva_impl::faddeeva_smabmq_impl( z.real(), z.imag(), 12., faddeeva_impl::a24, faddeeva_impl::npi24, faddeeva_impl::taylorarr24); } std::complex RooMath::faddeeva_fast(std::complex z) { return faddeeva_impl::faddeeva_smabmq_impl( z.real(), z.imag(), 8., faddeeva_impl::a11, faddeeva_impl::npi11, faddeeva_impl::taylorarr11); } std::complex RooMath::erfc(const std::complex z) { double re = -z.real() * z.real() + z.imag() * z.imag(); double im = -2. * z.real() * z.imag(); faddeeva_impl::cexp(re, im); return (z.real() >= 0.) ? (std::complex(re, im) * faddeeva(std::complex(-z.imag(), z.real()))) : (2. - std::complex(re, im) * faddeeva(std::complex(z.imag(), -z.real()))); } std::complex RooMath::erfc_fast(const std::complex z) { double re = -z.real() * z.real() + z.imag() * z.imag(); double im = -2. * z.real() * z.imag(); faddeeva_impl::cexp(re, im); return (z.real() >= 0.) ? (std::complex(re, im) * faddeeva_fast(std::complex(-z.imag(), z.real()))) : (2. - std::complex(re, im) * faddeeva_fast(std::complex(z.imag(), -z.real()))); } std::complex RooMath::erf(const std::complex z) { double re = -z.real() * z.real() + z.imag() * z.imag(); double im = -2. * z.real() * z.imag(); faddeeva_impl::cexp(re, im); return (z.real() >= 0.) ? (1. - std::complex(re, im) * faddeeva(std::complex(-z.imag(), z.real()))) : (std::complex(re, im) * faddeeva(std::complex(z.imag(), -z.real())) - 1.); } std::complex RooMath::erf_fast(const std::complex z) { double re = -z.real() * z.real() + z.imag() * z.imag(); double im = -2. * z.real() * z.imag(); faddeeva_impl::cexp(re, im); return (z.real() >= 0.) ? (1. - std::complex(re, im) * faddeeva_fast(std::complex(-z.imag(), z.real()))) : (std::complex(re, im) * faddeeva_fast(std::complex(z.imag(), -z.real())) - 1.); } Double_t RooMath::interpolate(Double_t ya[], Int_t n, Double_t x) { // Interpolate array 'ya' with 'n' elements for 'x' (between 0 and 'n'-1) // Int to Double conversion is faster via array lookup than type conversion! static Double_t itod[20] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0} ; int i,m,ns=1 ; Double_t den,dif,dift/*,ho,hp,w*/,y,dy ; Double_t c[20], d[20] ; dif = fabs(x) ; for(i=1 ; i<=n ; i++) { if ((dift=fabs(x-itod[i-1])) void RooMath::warn(const char* oldfun, const char* newfun) { static std::map nwarn; if (nwarn[oldfun] < 1<<12) { ++nwarn[oldfun]; if (newfun) { std::cout << "[#0] WARN: RooMath::" << oldfun << " is deprecated, please use " << newfun << " instead." << std::endl; } else { std::cout << "[#0] WARN: RooMath::" << oldfun << " is deprecated, and no longer needed, " "you can remove the call to " << oldfun << " entirely." << std::endl; } } }