////////////////////////////////////////////////////////////////////////// // // 'ADDITION AND CONVOLUTION' RooFit tutorial macro #202 // // Setting up an extended maximum likelihood fit // // // // 07/2008 - Wouter Verkerke // ///////////////////////////////////////////////////////////////////////// #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooRealVar.h" #include "RooDataSet.h" #include "RooGaussian.h" #include "RooChebychev.h" #include "RooAddPdf.h" #include "RooExtendPdf.h" #include "TCanvas.h" #include "RooPlot.h" using namespace RooFit ; class TestBasic202 : public RooFitTestUnit { public: TestBasic202(TFile* refFile, Bool_t writeRef, Int_t verbose) : RooFitTestUnit("Extended ML fits to addition operator p.d.f.s",refFile,writeRef,verbose) {} ; Bool_t testCode() { // S e t u p c o m p o n e n t p d f s // --------------------------------------- // Declare observable x RooRealVar x("x","x",0,10) ; // Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters RooRealVar mean("mean","mean of gaussians",5) ; RooRealVar sigma1("sigma1","width of gaussians",0.5) ; RooRealVar sigma2("sigma2","width of gaussians",1) ; RooGaussian sig1("sig1","Signal component 1",x,mean,sigma1) ; RooGaussian sig2("sig2","Signal component 2",x,mean,sigma2) ; // Build Chebychev polynomial p.d.f. RooRealVar a0("a0","a0",0.5,0.,1.) ; RooRealVar a1("a1","a1",-0.2,0.,1.) ; RooChebychev bkg("bkg","Background",x,RooArgSet(a0,a1)) ; // Sum the signal components into a composite signal p.d.f. RooRealVar sig1frac("sig1frac","fraction of component 1 in signal",0.8,0.,1.) ; RooAddPdf sig("sig","Signal",RooArgList(sig1,sig2),sig1frac) ; ///////////////////// // M E T H O D 1 // ///////////////////// // C o n s t r u c t e x t e n d e d c o m p o s i t e m o d e l // ------------------------------------------------------------------- // Sum the composite signal and background into an extended pdf nsig*sig+nbkg*bkg RooRealVar nsig("nsig","number of signal events",500,0.,10000) ; RooRealVar nbkg("nbkg","number of background events",500,0,10000) ; RooAddPdf model("model","(g1+g2)+a",RooArgList(bkg,sig),RooArgList(nbkg,nsig)) ; // S a m p l e , f i t a n d p l o t e x t e n d e d m o d e l // --------------------------------------------------------------------- // Generate a data sample of expected number events in x from model // = model.expectedEvents() = nsig+nbkg RooDataSet *data = model.generate(x) ; // Fit model to data, extended ML term automatically included model.fitTo(*data) ; // Plot data and PDF overlaid, use expected number of events for p.d.f projection normalization // rather than observed number of events (==data->numEntries()) RooPlot* xframe = x.frame(Title("extended ML fit example")) ; data->plotOn(xframe) ; model.plotOn(xframe,Normalization(1.0,RooAbsReal::RelativeExpected)) ; // Overlay the background component of model with a dashed line model.plotOn(xframe,Components(bkg),LineStyle(kDashed),Normalization(1.0,RooAbsReal::RelativeExpected)) ; // Overlay the background+sig2 components of model with a dotted line model.plotOn(xframe,Components(RooArgSet(bkg,sig2)),LineStyle(kDotted),Normalization(1.0,RooAbsReal::RelativeExpected)) ; ///////////////////// // M E T H O D 2 // ///////////////////// // C o n s t r u c t e x t e n d e d c o m p o n e n t s f i r s t // --------------------------------------------------------------------- // Associated nsig/nbkg as expected number of events with sig/bkg RooExtendPdf esig("esig","extended signal p.d.f",sig,nsig) ; RooExtendPdf ebkg("ebkg","extended background p.d.f",bkg,nbkg) ; // S u m e x t e n d e d c o m p o n e n t s w i t h o u t c o e f s // ------------------------------------------------------------------------- // Construct sum of two extended p.d.f. (no coefficients required) RooAddPdf model2("model2","(g1+g2)+a",RooArgList(ebkg,esig)) ; regPlot(xframe,"rf202_plot1") ; delete data ; return kTRUE ; } } ;