///////////////////////////////////////////////////////////////////////// // // 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #303 // // Use of tailored p.d.f as conditional p.d.fs.s // // pdf = gauss(x,f(y),sx | y ) with f(y) = a0 + a1*y // // // 07/2008 - Wouter Verkerke // ///////////////////////////////////////////////////////////////////////// #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooRealVar.h" #include "RooDataSet.h" #include "RooGaussian.h" #include "RooPolyVar.h" #include "RooProdPdf.h" #include "RooPlot.h" #include "TRandom.h" #include "TCanvas.h" #include "TH1.h" using namespace RooFit ; class TestBasic303 : public RooFitTestUnit { public: RooDataSet* makeFakeDataXY() { RooRealVar x("x","x",-10,10) ; RooRealVar y("y","y",-10,10) ; RooArgSet coord(x,y) ; RooDataSet* d = new RooDataSet("d","d",RooArgSet(x,y)) ; for (int i=0 ; i<10000 ; i++) { Double_t tmpy = gRandom->Gaus(0,10) ; Double_t tmpx = gRandom->Gaus(0.5*tmpy,1) ; if (fabs(tmpy)<10 && fabs(tmpx)<10) { x = tmpx ; y = tmpy ; d->add(coord) ; } } return d ; } TestBasic303(TFile* refFile, Bool_t writeRef, Int_t verbose) : RooFitTestUnit("Conditional use of F(x|y)",refFile,writeRef,verbose) {} ; Bool_t testCode() { // S e t u p c o m p o s e d m o d e l g a u s s ( x , m ( y ) , s ) // ----------------------------------------------------------------------- // Create observables RooRealVar x("x","x",-10,10) ; RooRealVar y("y","y",-10,10) ; // Create function f(y) = a0 + a1*y RooRealVar a0("a0","a0",-0.5,-5,5) ; RooRealVar a1("a1","a1",-0.5,-1,1) ; RooPolyVar fy("fy","fy",y,RooArgSet(a0,a1)) ; // Creat gauss(x,f(y),s) RooRealVar sigma("sigma","width of gaussian",0.5,0.1,2.0) ; RooGaussian model("model","Gaussian with shifting mean",x,fy,sigma) ; // Obtain fake external experimental dataset with values for x and y RooDataSet* expDataXY = makeFakeDataXY() ; // G e n e r a t e d a t a f r o m c o n d i t i o n a l p . d . f m o d e l ( x | y ) // --------------------------------------------------------------------------------------------- // Make subset of experimental data with only y values RooDataSet* expDataY= (RooDataSet*) expDataXY->reduce(y) ; // Generate 10000 events in x obtained from _conditional_ model(x|y) with y values taken from experimental data RooDataSet *data = model.generate(x,ProtoData(*expDataY)) ; // F i t c o n d i t i o n a l p . d . f m o d e l ( x | y ) t o d a t a // --------------------------------------------------------------------------------------------- model.fitTo(*expDataXY,ConditionalObservables(y)) ; // P r o j e c t c o n d i t i o n a l p . d . f o n x a n d y d i m e n s i o n s // --------------------------------------------------------------------------------------------- // Plot x distribution of data and projection of model on x = 1/Ndata sum(data(y_i)) model(x;y_i) RooPlot* xframe = x.frame() ; expDataXY->plotOn(xframe) ; model.plotOn(xframe,ProjWData(*expDataY)) ; // Speed up (and approximate) projection by using binned clone of data for projection RooAbsData* binnedDataY = expDataY->binnedClone() ; model.plotOn(xframe,ProjWData(*binnedDataY),LineColor(kCyan),LineStyle(kDotted),Name("Alt1")) ; // Show effect of projection with too coarse binning ((RooRealVar*)expDataY->get()->find("y"))->setBins(5) ; RooAbsData* binnedDataY2 = expDataY->binnedClone() ; model.plotOn(xframe,ProjWData(*binnedDataY2),LineColor(kRed),Name("Alt2")) ; regPlot(xframe,"rf303_plot1") ; delete binnedDataY ; delete binnedDataY2 ; delete expDataXY ; delete expDataY ; delete data ; return kTRUE ; } } ;