////////////////////////////////////////////////////////////////////////// // // 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #313 // // Working with parameterized ranges to define non-rectangular regions // for fitting and integration // // // // 07/2008 - Wouter Verkerke // ///////////////////////////////////////////////////////////////////////// #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooRealVar.h" #include "RooDataSet.h" #include "RooGaussian.h" #include "RooPolynomial.h" #include "RooProdPdf.h" #include "TCanvas.h" #include "RooPlot.h" using namespace RooFit ; class TestBasic313 : public RooFitTestUnit { public: TestBasic313(TFile* refFile, Bool_t writeRef, Int_t verbose) : RooFitTestUnit("Integration over non-rectangular regions",refFile,writeRef,verbose) {} ; Bool_t testCode() { // C r e a t e 3 D p d f // ------------------------- // Define observable (x,y,z) RooRealVar x("x","x",0,10) ; RooRealVar y("y","y",0,10) ; RooRealVar z("z","z",0,10) ; // Define 3 dimensional pdf RooRealVar z0("z0","z0",-0.1,1) ; RooPolynomial px("px","px",x,RooConst(0)) ; RooPolynomial py("py","py",y,RooConst(0)) ; RooPolynomial pz("pz","pz",z,z0) ; RooProdPdf pxyz("pxyz","pxyz",RooArgSet(px,py,pz)) ; // D e f i n e d n o n - r e c t a n g u l a r r e g i o n R i n ( x , y , z ) // ------------------------------------------------------------------------------------- // // R = Z[0 - 0.1*Y^2] * Y[0.1*X - 0.9*X] * X[0 - 10] // // Construct range parameterized in "R" in y [ 0.1*x, 0.9*x ] RooFormulaVar ylo("ylo","0.1*x",x) ; RooFormulaVar yhi("yhi","0.9*x",x) ; y.setRange("R",ylo,yhi) ; // Construct parameterized ranged "R" in z [ 0, 0.1*y^2 ] RooFormulaVar zlo("zlo","0.0*y",y) ; RooFormulaVar zhi("zhi","0.1*y*y",y) ; z.setRange("R",zlo,zhi) ; // C a l c u l a t e i n t e g r a l o f n o r m a l i z e d p d f i n R // ---------------------------------------------------------------------------------- // Create integral over normalized pdf model over x,y,z in "R" region RooAbsReal* intPdf = pxyz.createIntegral(RooArgSet(x,y,z),RooArgSet(x,y,z),"R") ; // Plot value of integral as function of pdf parameter z0 RooPlot* frame = z0.frame(Title("Integral of pxyz over x,y,z in region R")) ; intPdf->plotOn(frame) ; regPlot(frame,"rf313_plot1") ; delete intPdf ; return kTRUE; } } ;