////////////////////////////////////////////////////////////////////////// // // 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #316 // // Using the likelihood ratio techique to construct a signal enhanced // one-dimensional projection of a multi-dimensional p.d.f. // // // // 07/2008 - Wouter Verkerke // ///////////////////////////////////////////////////////////////////////// #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooRealVar.h" #include "RooDataSet.h" #include "RooGaussian.h" #include "RooPolynomial.h" #include "RooAddPdf.h" #include "RooProdPdf.h" #include "TCanvas.h" #include "RooPlot.h" using namespace RooFit ; class TestBasic316 : public RooFitTestUnit { public: TestBasic316(TFile* refFile, Bool_t writeRef, Int_t verbose) : RooFitTestUnit("Likelihood ratio projection plot",refFile,writeRef,verbose) {} ; Bool_t testCode() { // C r e a t e 3 D p d f a n d d a t a // ------------------------------------------- // Create observables RooRealVar x("x","x",-5,5) ; RooRealVar y("y","y",-5,5) ; RooRealVar z("z","z",-5,5) ; // Create signal pdf gauss(x)*gauss(y)*gauss(z) RooGaussian gx("gx","gx",x,RooConst(0),RooConst(1)) ; RooGaussian gy("gy","gy",y,RooConst(0),RooConst(1)) ; RooGaussian gz("gz","gz",z,RooConst(0),RooConst(1)) ; RooProdPdf sig("sig","sig",RooArgSet(gx,gy,gz)) ; // Create background pdf poly(x)*poly(y)*poly(z) RooPolynomial px("px","px",x,RooArgSet(RooConst(-0.1),RooConst(0.004))) ; RooPolynomial py("py","py",y,RooArgSet(RooConst(0.1),RooConst(-0.004))) ; RooPolynomial pz("pz","pz",z) ; RooProdPdf bkg("bkg","bkg",RooArgSet(px,py,pz)) ; // Create composite pdf sig+bkg RooRealVar fsig("fsig","signal fraction",0.1,0.,1.) ; RooAddPdf model("model","model",RooArgList(sig,bkg),fsig) ; RooDataSet* data = model.generate(RooArgSet(x,y,z),20000) ; // P r o j e c t p d f a n d d a t a o n x // ------------------------------------------------- // Make plain projection of data and pdf on x observable RooPlot* frame = x.frame(Title("Projection of 3D data and pdf on X"),Bins(40)) ; data->plotOn(frame) ; model.plotOn(frame) ; // D e f i n e p r o j e c t e d s i g n a l l i k e l i h o o d r a t i o // ---------------------------------------------------------------------------------- // Calculate projection of signal and total likelihood on (y,z) observables // i.e. integrate signal and composite model over x RooAbsPdf* sigyz = sig.createProjection(x) ; RooAbsPdf* totyz = model.createProjection(x) ; // Construct the log of the signal / signal+background probability RooFormulaVar llratio_func("llratio","log10(@0)-log10(@1)",RooArgList(*sigyz,*totyz)) ; // P l o t d a t a w i t h a L L r a t i o c u t // ------------------------------------------------------- // Calculate the llratio value for each event in the dataset data->addColumn(llratio_func) ; // Extract the subset of data with large signal likelihood RooDataSet* dataSel = (RooDataSet*) data->reduce(Cut("llratio>0.7")) ; // Make plot frame RooPlot* frame2 = x.frame(Title("Same projection on X with LLratio(y,z)>0.7"),Bins(40)) ; // Plot select data on frame dataSel->plotOn(frame2) ; // M a k e M C p r o j e c t i o n o f p d f w i t h s a m e L L r a t i o c u t // --------------------------------------------------------------------------------------------- // Generate large number of events for MC integration of pdf projection RooDataSet* mcprojData = model.generate(RooArgSet(x,y,z),10000) ; // Calculate LL ratio for each generated event and select MC events with llratio)0.7 mcprojData->addColumn(llratio_func) ; RooDataSet* mcprojDataSel = (RooDataSet*) mcprojData->reduce(Cut("llratio>0.7")) ; // Project model on x, integrating projected observables (y,z) with Monte Carlo technique // on set of events with the same llratio cut as was applied to data model.plotOn(frame2,ProjWData(*mcprojDataSel)) ; regPlot(frame,"rf316_plot1") ; regPlot(frame2,"rf316_plot2") ; delete data ; delete dataSel ; delete mcprojData ; delete mcprojDataSel ; delete sigyz ; delete totyz ; return kTRUE ; } } ;