////////////////////////////////////////////////////////////////////////// // // 'LIKELIHOOD AND MINIMIZATION' RooFit tutorial macro #607 // // Demonstration of options of the RooFitResult class // // // // 07/2008 - Wouter Verkerke // ///////////////////////////////////////////////////////////////////////// #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooRealVar.h" #include "RooDataSet.h" #include "RooGaussian.h" #include "RooAddPdf.h" #include "RooChebychev.h" #include "RooFitResult.h" #include "TCanvas.h" #include "RooPlot.h" #include "TFile.h" #include "TStyle.h" #include "TH2.h" using namespace RooFit ; class TestBasic607 : public RooFitTestUnit { public: TestBasic607(TFile* refFile, Bool_t writeRef, Int_t verbose) : RooFitTestUnit("Fit Result functionality",refFile,writeRef,verbose) {} ; Bool_t testCode() { // C r e a t e p d f , d a t a // -------------------------------- // Declare observable x RooRealVar x("x","x",0,10) ; // Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters RooRealVar mean("mean","mean of gaussians",5,-10,10) ; RooRealVar sigma1("sigma1","width of gaussians",0.5,0.1,10) ; RooRealVar sigma2("sigma2","width of gaussians",1,0.1,10) ; RooGaussian sig1("sig1","Signal component 1",x,mean,sigma1) ; RooGaussian sig2("sig2","Signal component 2",x,mean,sigma2) ; // Build Chebychev polynomial p.d.f. RooRealVar a0("a0","a0",0.5,0.,1.) ; RooRealVar a1("a1","a1",-0.2) ; RooChebychev bkg("bkg","Background",x,RooArgSet(a0,a1)) ; // Sum the signal components into a composite signal p.d.f. RooRealVar sig1frac("sig1frac","fraction of component 1 in signal",0.8,0.,1.) ; RooAddPdf sig("sig","Signal",RooArgList(sig1,sig2),sig1frac) ; // Sum the composite signal and background RooRealVar bkgfrac("bkgfrac","fraction of background",0.5,0.,1.) ; RooAddPdf model("model","g1+g2+a",RooArgList(bkg,sig),bkgfrac) ; // Generate 1000 events RooDataSet* data = model.generate(x,1000) ; // F i t p d f t o d a t a , s a v e f i t r e s u l t // ------------------------------------------------------------- // Perform fit and save result RooFitResult* r = model.fitTo(*data,Save()) ; // V i s u a l i z e c o r r e l a t i o n m a t r i x // ------------------------------------------------------- // Construct 2D color plot of correlation matrix gStyle->SetOptStat(0) ; gStyle->SetPalette(1) ; TH2* hcorr = r->correlationHist() ; // Sample dataset with parameter values according to distribution // of covariance matrix of fit result RooDataSet randPars("randPars","randPars",r->floatParsFinal()) ; for (Int_t i=0 ; i<10000 ; i++) { randPars.add(r->randomizePars()) ; } // make histogram of 2D distribution in sigma1 vs sig1frac TH1* hhrand = randPars.createHistogram("hhrand",sigma1,Binning(35,0.25,0.65),YVar(sig1frac,Binning(35,0.3,1.1))) ; regTH(hcorr,"rf607_hcorr") ; regTH(hhrand,"rf607_hhand") ; delete data ; delete r ; return kTRUE ; } } ;