////////////////////////////////////////////////////////////////////////// // // 'SPECIAL PDFS' RooFit tutorial macro #701 // // Unbinned maximum likelihood fit of an efficiency eff(x) function to // a dataset D(x,cut), where cut is a category encoding a selection, of which // the efficiency as function of x should be described by eff(x) // // 07/2008 - Wouter Verkerke // ///////////////////////////////////////////////////////////////////////// #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooRealVar.h" #include "RooDataSet.h" #include "RooGaussian.h" #include "RooFormulaVar.h" #include "RooProdPdf.h" #include "RooEfficiency.h" #include "RooPolynomial.h" #include "RooCategory.h" #include "TCanvas.h" #include "RooPlot.h" using namespace RooFit ; // Elementary operations on a gaussian PDF class TestBasic701 : public RooFitTestUnit { public: TestBasic701(TFile* refFile, Bool_t writeRef, Int_t verbose) : RooFitTestUnit("Efficiency operator p.d.f. 1D",refFile,writeRef,verbose) {} ; Bool_t testCode() { // C o n s t r u c t e f f i c i e n c y f u n c t i o n e ( x ) // ------------------------------------------------------------------- // Declare variables x,mean,sigma with associated name, title, initial value and allowed range RooRealVar x("x","x",-10,10) ; // Efficiency function eff(x;a,b) RooRealVar a("a","a",0.4,0,1) ; RooRealVar b("b","b",5) ; RooRealVar c("c","c",-1,-10,10) ; RooFormulaVar effFunc("effFunc","(1-a)+a*cos((x-c)/b)",RooArgList(a,b,c,x)) ; // C o n s t r u c t c o n d i t i o n a l e f f i c i e n c y p d f E ( c u t | x ) // ------------------------------------------------------------------------------------------ // Acceptance state cut (1 or 0) RooCategory cut("cut","cutr") ; cut.defineType("accept",1) ; cut.defineType("reject",0) ; // Construct efficiency p.d.f eff(cut|x) RooEfficiency effPdf("effPdf","effPdf",effFunc,cut,"accept") ; // G e n e r a t e d a t a ( x , c u t ) f r o m a t o y m o d e l // ----------------------------------------------------------------------------- // Construct global shape p.d.f shape(x) and product model(x,cut) = eff(cut|x)*shape(x) // (These are _only_ needed to generate some toy MC here to be used later) RooPolynomial shapePdf("shapePdf","shapePdf",x,RooConst(-0.095)) ; RooProdPdf model("model","model",shapePdf,Conditional(effPdf,cut)) ; // Generate some toy data from model RooDataSet* data = model.generate(RooArgSet(x,cut),10000) ; // F i t c o n d i t i o n a l e f f i c i e n c y p d f t o d a t a // -------------------------------------------------------------------------- // Fit conditional efficiency p.d.f to data effPdf.fitTo(*data,ConditionalObservables(x)) ; // P l o t f i t t e d , d a t a e f f i c i e n c y // -------------------------------------------------------- // Plot distribution of all events and accepted fraction of events on frame RooPlot* frame1 = x.frame(Bins(20),Title("Data (all, accepted)")) ; data->plotOn(frame1) ; data->plotOn(frame1,Cut("cut==cut::accept"),MarkerColor(kRed),LineColor(kRed)) ; // Plot accept/reject efficiency on data overlay fitted efficiency curve RooPlot* frame2 = x.frame(Bins(20),Title("Fitted efficiency")) ; data->plotOn(frame2,Efficiency(cut)) ; // needs ROOT version >= 5.21 effFunc.plotOn(frame2,LineColor(kRed)) ; regPlot(frame1,"rf701_plot1") ; regPlot(frame2,"rf701_plot2") ; delete data ; return kTRUE ; } } ;