// @(#)root/tmva $Id$ // Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss, Peter Speckmayer, Eckhard von Toerne, Jan Therhaag /********************************************************************************** * Project: TMVA - a Root-integrated toolkit for multivariate data analysis * * Package: TMVA * * Class : MethodLikelihood * * Web : http://tmva.sourceforge.net * * * * Description: * * Likelihood analysis ("non-parametric approach") * * Also implemented is a "diagonalized likelihood approach", * * which improves over the uncorrelated likelihood ansatz by transforming * * linearly the input variables into a diagonal space, using the square-root * * of the covariance matrix. This approach can be chosen by inserting * * the letter "D" into the option string. * * * * Authors (alphabetical): * * Andreas Hoecker - CERN, Switzerland * * Peter Speckmayer - CERN, Switzerland * * Joerg Stelzer - CERN, Switzerland * * Helge Voss - MPI-K Heidelberg, Germany * * Kai Voss - U. of Victoria, Canada * * Jan Therhaag - U of Bonn, Germany * * Eckhard v. Toerne - U of Bonn, Germany * * * * Copyright (c) 2005-2011: * * CERN, Switzerland * * U. of Victoria, Canada * * MPI-K Heidelberg, Germany * * U. of Bonn, Germany * * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted according to the terms listed in LICENSE * * (http://tmva.sourceforge.net/LICENSE) * **********************************************************************************/ #ifndef ROOT_TMVA_MethodLikelihood #define ROOT_TMVA_MethodLikelihood ////////////////////////////////////////////////////////////////////////// // // // MethodLikelihood // // // // Likelihood analysis ("non-parametric approach") // // Also implemented is a "diagonalized likelihood approach", // // which improves over the uncorrelated likelihood ansatz by // // transforming linearly the input variables into a diagonal space, // // using the square-root of the covariance matrix // // // ////////////////////////////////////////////////////////////////////////// #ifndef ROOT_TMVA_MethodBase #include "TMVA/MethodBase.h" #endif #ifndef ROOT_TMVA_PDF #include "TMVA/PDF.h" #endif class TH1D; namespace TMVA { class MethodLikelihood : public MethodBase { public: MethodLikelihood( const TString& jobName, const TString& methodTitle, DataSetInfo& theData, const TString& theOption = "", TDirectory* theTargetDir = 0 ); MethodLikelihood( DataSetInfo& theData, const TString& theWeightFile, TDirectory* theTargetDir = NULL ); virtual ~MethodLikelihood(); virtual Bool_t HasAnalysisType( Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets ); // training method void Train(); // write weights to file void WriteWeightsToStream( TFile& rf ) const; void AddWeightsXMLTo( void* parent ) const; // read weights from file void ReadWeightsFromStream( std::istream& istr ); void ReadWeightsFromStream( TFile& istr ); void ReadWeightsFromXML( void* wghtnode ); // calculate the MVA value // the argument is used for internal ranking tests Double_t GetMvaValue( Double_t* err = 0, Double_t* errUpper = 0 ); // write method specific histos to target file void WriteMonitoringHistosToFile() const; // ranking of input variables const Ranking* CreateRanking(); virtual void WriteOptionsToStream ( std::ostream& o, const TString& prefix ) const; protected: void DeclareCompatibilityOptions(); // make ROOT-independent C++ class for classifier response (classifier-specific implementation) void MakeClassSpecific( std::ostream&, const TString& ) const; // header and auxiliary classes void MakeClassSpecificHeader( std::ostream&, const TString& = "" ) const; // get help message text void GetHelpMessage() const; private: // returns transformed or non-transformed output Double_t TransformLikelihoodOutput( Double_t ps, Double_t pb ) const; // the option handling methods void Init(); void DeclareOptions(); void ProcessOptions(); // options Double_t fEpsilon; // minimum number of likelihood (to avoid zero) Bool_t fTransformLikelihoodOutput; // likelihood output is sigmoid-transformed Int_t fDropVariable; // for ranking test std::vector* fHistSig; // signal PDFs (histograms) std::vector* fHistBgd; // background PDFs (histograms) std::vector* fHistSig_smooth; // signal PDFs (smoothed histograms) std::vector* fHistBgd_smooth; // background PDFs (smoothed histograms) PDF* fDefaultPDFLik; // pdf that contains default definitions std::vector* fPDFSig; // list of PDFs (signal) std::vector* fPDFBgd; // list of PDFs (background) // default initialisation called by all constructors // obsolete variables kept for backward combatibility Int_t fNsmooth; // number of smooth passes Int_t* fNsmoothVarS; // number of smooth passes Int_t* fNsmoothVarB; // number of smooth passes Int_t fAverageEvtPerBin; // average events per bin; used to calculate fNbins Int_t* fAverageEvtPerBinVarS; // average events per bin; used to calculate fNbins Int_t* fAverageEvtPerBinVarB; // average events per bin; used to calculate fNbins TString fBorderMethodString; // the method to take care about "border" effects (string) Float_t fKDEfineFactor; // fine tuning factor for Adaptive KDE TString fKDEiterString; // Number of iterations (string) TString fKDEtypeString; // Kernel type to use for KDE (string) TString* fInterpolateString; // which interpolation method used for reference histograms (individual for each variable) ClassDef(MethodLikelihood,0) // Likelihood analysis ("non-parametric approach") }; } // namespace TMVA #endif // MethodLikelihood_H