// @(#)root/tmva $Id$ // Author: Andreas Hoecker, Peter Speckmayer, Joerg Stelzer, Helge Voss, Eckhard von Toerne, Jan Therhaag /********************************************************************************** * Project: TMVA - a Root-integrated toolkit for multivariate data analysis * * Package: TMVA * * Class : TransformationHandler * * Web : http://tmva.sourceforge.net * * * * Description: * * Implementation (see header for description) * * * * Authors (alphabetical): * * Andreas Hoecker - CERN, Switzerland * * Peter Speckmayer - CERN, Switzerland * * Joerg Stelzer - CERN, Switzerland * * Jan Therhaag - U of Bonn, Germany * * Eckhard v. Toerne - U of Bonn, Germany * * Helge Voss - MPI-K Heidelberg, Germany * * * * Copyright (c) 2005-2011: * * CERN, Switzerland * * MPI-K Heidelberg, Germany * * U. of Bonn, Germany * * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted according to the terms listed in LICENSE * * (http://tmva.sourceforge.net/LICENSE) * **********************************************************************************/ #include #include #include "TMath.h" #include "TH1.h" #include "TH2.h" #include "TAxis.h" #include "TProfile.h" #ifndef ROOT_TMVA_Config #include "TMVA/Config.h" #endif #ifndef ROOT_TMVA_DataSet #include "TMVA/DataSet.h" #endif #ifndef ROOT_TMVA_Event #include "TMVA/Event.h" #endif #ifndef ROOT_TMVA_MsgLogger #include "TMVA/MsgLogger.h" #endif #ifndef ROOT_TMVA_Ranking #include "TMVA/Ranking.h" #endif #ifndef ROOT_TMVA_Tools #include "TMVA/Tools.h" #endif #ifndef ROOT_TMVA_TransformationHandler #include "TMVA/TransformationHandler.h" #endif #ifndef ROOT_TMVA_VariableTransformBase #include "TMVA/VariableTransformBase.h" #endif #include "TMVA/VariableIdentityTransform.h" #include "TMVA/VariableDecorrTransform.h" #include "TMVA/VariablePCATransform.h" #include "TMVA/VariableGaussTransform.h" #include "TMVA/VariableNormalizeTransform.h" #include "TMVA/VariableRearrangeTransform.h" //_______________________________________________________________________ TMVA::TransformationHandler::TransformationHandler( DataSetInfo& dsi, const TString& callerName ) : fDataSetInfo(dsi), fRootBaseDir(0), fCallerName (callerName), fLogger ( new MsgLogger(TString("TFHandler_" + callerName).Data(), kINFO) ) { // constructor // produce one entry for each class and one entry for all classes. If there is only one class, // produce only one entry fNumC = (dsi.GetNClasses()<= 1) ? 1 : dsi.GetNClasses()+1; fVariableStats.resize( fNumC ); for (Int_t i=0; i::const_iterator it = fRanking.begin(); for (; it != fRanking.end(); it++) delete *it; fTransformations.SetOwner(); delete fLogger; } //_______________________________________________________________________ void TMVA::TransformationHandler::SetCallerName( const TString& name ) { fCallerName = name; fLogger->SetSource( TString("TFHandler_" + fCallerName).Data() ); } //_______________________________________________________________________ TMVA::VariableTransformBase* TMVA::TransformationHandler::AddTransformation( VariableTransformBase *trf, Int_t cls ) { TString tfname = trf->Log().GetName(); trf->Log().SetSource(TString(fCallerName+"_"+tfname+"_TF").Data()); fTransformations.Add(trf); fTransformationsReferenceClasses.push_back( cls ); return trf; } //_______________________________________________________________________ void TMVA::TransformationHandler::AddStats( Int_t k, UInt_t ivar, Double_t mean, Double_t rms, Double_t min, Double_t max ) { if (rms <= 0) { Log() << kWARNING << "Variable \"" << Variable(ivar).GetExpression() << "\" has zero or negative RMS^2 " << "==> set to zero. Please check the variable content" << Endl; rms = 0; } VariableStat stat; stat.fMean = mean; stat.fRMS = rms; stat.fMin = min; stat.fMax = max; fVariableStats.at(k).at(ivar) = stat; } //_______________________________________________________________________ void TMVA::TransformationHandler::SetTransformationReferenceClass( Int_t cls ) { // overrides the setting for all classes! (this is put in basically for the likelihood-method) // be careful with the usage this method for (UInt_t i = 0; i < fTransformationsReferenceClasses.size(); i++) { fTransformationsReferenceClasses.at( i ) = cls; } } //_______________________________________________________________________ const TMVA::Event* TMVA::TransformationHandler::Transform( const Event* ev ) const { // the transformation TListIter trIt(&fTransformations); std::vector::const_iterator rClsIt = fTransformationsReferenceClasses.begin(); const Event* trEv = ev; while (VariableTransformBase *trf = (VariableTransformBase*) trIt()) { if (rClsIt == fTransformationsReferenceClasses.end()) Log() << kFATAL<< "invalid read in TransformationHandler::Transform " <Transform(trEv, (*rClsIt) ); rClsIt++; } return trEv; } //_______________________________________________________________________ const TMVA::Event* TMVA::TransformationHandler::InverseTransform( const Event* ev, Bool_t suppressIfNoTargets ) const { if (fTransformationsReferenceClasses.empty()){ //Log() << kWARNING << __FILE__ <<":InverseTransform fTransformationsReferenceClasses is empty" << Endl; return ev; } // the inverse transformation TListIter trIt(&fTransformations, kIterBackward); std::vector< Int_t >::const_iterator rClsIt = fTransformationsReferenceClasses.end(); rClsIt--; const Event* trEv = ev; UInt_t nvars = 0, ntgts = 0, nspcts = 0; while (VariableTransformBase *trf = (VariableTransformBase*) trIt() ) { // shouldn't be the transformation called in the inverse order for the inversetransformation????? if (trf->IsCreated()) { trf->CountVariableTypes( nvars, ntgts, nspcts ); if( !(suppressIfNoTargets && ntgts==0) ) trEv = trf->InverseTransform(ev, (*rClsIt) ); } else break; --rClsIt; } return trEv; // TListIter trIt(&fTransformations); // std::vector< Int_t >::const_iterator rClsIt = fTransformationsReferenceClasses.begin(); // const Event* trEv = ev; // UInt_t nvars = 0, ntgts = 0, nspcts = 0; // while (VariableTransformBase *trf = (VariableTransformBase*) trIt() ) { // shouldn't be the transformation called in the inverse order for the inversetransformation????? // if (trf->IsCreated()) { // trf->CountVariableTypes( nvars, ntgts, nspcts ); // if( !(suppressIfNoTargets && ntgts==0) ) // trEv = trf->InverseTransform(ev, (*rClsIt) ); // } // else break; // rClsIt++; // } // return trEv; } //_______________________________________________________________________ const std::vector* TMVA::TransformationHandler::CalcTransformations( const std::vector& events, Bool_t createNewVector ) { // computation of transformation if (fTransformations.GetEntries() <= 0) return &events; std::vector* tmpEvents = new std::vector(events.size()); for ( UInt_t ievt = 0; ievtat(ievt) = new Event(*events.at(ievt)); Bool_t replaceColl = kFALSE; // first let TransformCollection create a new vector TListIter trIt(&fTransformations); std::vector< Int_t >::iterator rClsIt = fTransformationsReferenceClasses.begin(); while (VariableTransformBase *trf = (VariableTransformBase*) trIt()) { if (trf->PrepareTransformation(*tmpEvents)) { tmpEvents = TransformCollection(trf, (*rClsIt), tmpEvents, replaceColl); // we now created a new vector, so the next transformations replace the // events by their transformed versions replaceColl = kTRUE; rClsIt++; } } CalcStats(*tmpEvents); // plot the variables once in this transformation PlotVariables(*tmpEvents); if (!createNewVector) { // if we don't want that newly created event vector to persist, then delete it if (replaceColl) { for ( UInt_t ievt = 0; ievtsize(); ievt++) delete (*tmpEvents)[ievt]; delete tmpEvents; } return 0; } return tmpEvents; // give back the newly created event collection (containing the transformed events) } //_______________________________________________________________________ std::vector* TMVA::TransformationHandler::TransformCollection( VariableTransformBase* trf, Int_t cls, std::vector* events, Bool_t replace) const { // a collection of transformations std::vector* tmpEvents = 0; if (replace) { // the events should be replaced by their transformed versions tmpEvents = events; } else { // a new event vector is created tmpEvents = new std::vector(events->size()); } for (UInt_t ievt = 0; ievtsize(); ievt++) { // loop through all events if (replace) { // and replace the event by its transformed version *(*tmpEvents)[ievt] = *trf->Transform((*events)[ievt],cls); } else { // and create a new event which is the transformed version of the old event (*tmpEvents)[ievt] = new Event(*trf->Transform((*events)[ievt],cls)); } } return tmpEvents; } //_______________________________________________________________________ void TMVA::TransformationHandler::CalcStats (const std::vector& events ) { // method to calculate minimum, maximum, mean, and RMS for all // variables used in the MVA UInt_t nevts = events.size(); if (nevts==0) Log() << kFATAL << "No events available to find min, max, mean and rms" << Endl; // if transformation has not been succeeded, the tree may be empty const UInt_t nvar = events[0]->GetNVariables(); const UInt_t ntgt = events[0]->GetNTargets(); Double_t *sumOfWeights = new Double_t[fNumC]; Double_t* *x2 = new Double_t*[fNumC]; Double_t* *x0 = new Double_t*[fNumC]; Double_t* *varMin = new Double_t*[fNumC]; Double_t* *varMax = new Double_t*[fNumC]; for (Int_t cls=0; clsGetClass(); Double_t weight = ev->GetWeight(); sumOfWeights[cls] += weight; if (fNumC > 1 ) sumOfWeights[fNumC-1] += weight; // if more than one class, store values for all classes for (UInt_t var_tgt = 0; var_tgt < 2; var_tgt++ ){ // first for variables, then for targets UInt_t nloop = ( var_tgt==0?nvar:ntgt ); for (UInt_t ivar=0; ivarGetValue(ivar):ev->GetTarget(ivar) ); if (x < varMin[cls][(var_tgt*nvar)+ivar]) varMin[cls][(var_tgt*nvar)+ivar]= x; if (x > varMax[cls][(var_tgt*nvar)+ivar]) varMax[cls][(var_tgt*nvar)+ivar]= x; x0[cls][(var_tgt*nvar)+ivar] += x*weight; x2[cls][(var_tgt*nvar)+ivar] += x*x*weight; if (fNumC > 1) { if (x < varMin[fNumC-1][(var_tgt*nvar)+ivar]) varMin[fNumC-1][(var_tgt*nvar)+ivar]= x; if (x > varMax[fNumC-1][(var_tgt*nvar)+ivar]) varMax[fNumC-1][(var_tgt*nvar)+ivar]= x; x0[fNumC-1][(var_tgt*nvar)+ivar] += x*weight; x2[fNumC-1][(var_tgt*nvar)+ivar] += x*x*weight; } } } } // set Mean and RMS for (UInt_t var_tgt = 0; var_tgt < 2; var_tgt++ ){ // first for variables, then for targets UInt_t nloop = ( var_tgt==0?nvar:ntgt ); for (UInt_t ivar=0; ivar vLengths; for (UInt_t ivar=0; ivar::const_iterator rClsIt = fTransformationsReferenceClasses.begin(); UInt_t trCounter=1; while (VariableTransformBase *trf = (VariableTransformBase*) trIt() ) { trf->MakeFunction(fout, fncName, part, trCounter++, (*rClsIt) ); rClsIt++; } if (part==1) { for (Int_t i=0; i & iv, int sigOrBgd ) const;" << std::endl; } } if (part==2) { fout << std::endl; fout << "//_______________________________________________________________________" << std::endl; fout << "inline void " << fncName << "::InitTransform()" << std::endl; fout << "{" << std::endl; for (Int_t i=0; i& iv, int sigOrBgd ) const" << std::endl; fout << "{" << std::endl; for (Int_t i=0; iGetShortName()); while ((trf = (VariableTransformBase*) trIt())) name += "_" + TString(trf->GetShortName()); } return name; } //_______________________________________________________________________ TString TMVA::TransformationHandler::GetVariableAxisTitle( const VariableInfo& info ) const { // incorporates transformation type into title axis (usually for histograms) TString xtit = info.GetTitle(); // indicate transformation, but not in case of single identity transform if (fTransformations.GetSize() >= 1) { if (fTransformations.GetSize() > 1 || ((VariableTransformBase*)GetTransformationList().Last())->GetVariableTransform() != Types::kIdentity) { xtit += " (" + GetName() + ")"; } } return xtit; } //_______________________________________________________________________ void TMVA::TransformationHandler::PlotVariables (const std::vector& events, TDirectory* theDirectory ) { // create histograms from the input variables // - histograms for all input variables // - scatter plots for all pairs of input variables if (fRootBaseDir==0 && theDirectory == 0) return; Log() << kINFO << "Plot event variables for "; if (theDirectory !=0) Log()<< TString(theDirectory->GetName()) << Endl; else Log() << GetName() << Endl; // extension for transformation type TString transfType = ""; if (theDirectory == 0) { transfType += "_"; transfType += GetName(); }else{ // you plot for the individual classifiers. Note, here the "statistics" still need to be calculated as you are in the testing phase CalcStats(events); } const UInt_t nvar = fDataSetInfo.GetNVariables(); const UInt_t ntgt = fDataSetInfo.GetNTargets(); const Int_t ncls = fDataSetInfo.GetNClasses(); // Create all histograms // do both, scatter and profile plots std::vector > hVars( ncls ); // histograms for variables std::vector > > mycorr( ncls ); // histograms for correlations std::vector > > myprof( ncls ); // histograms for profiles for (Int_t cls = 0; cls < ncls; cls++) { hVars.at(cls).resize ( nvar+ntgt ); hVars.at(cls).assign ( nvar+ntgt, 0 ); // fill with zeros mycorr.at(cls).resize( nvar+ntgt ); myprof.at(cls).resize( nvar+ntgt ); for (UInt_t ivar=0; ivar < nvar+ntgt; ivar++) { mycorr.at(cls).at(ivar).resize( nvar+ntgt ); myprof.at(cls).at(ivar).resize( nvar+ntgt ); mycorr.at(cls).at(ivar).assign( nvar+ntgt, 0 ); // fill with zeros myprof.at(cls).at(ivar).assign( nvar+ntgt, 0 ); // fill with zeros } } // if there are too many input variables, the creation of correlations plots blows up // memory and basically kills the TMVA execution // --> avoid above critical number (which can be user defined) if (nvar+ntgt > (UInt_t)gConfig().GetVariablePlotting().fMaxNumOfAllowedVariablesForScatterPlots) { Int_t nhists = (nvar+ntgt)*(nvar+ntgt - 1)/2; Log() << kINFO << gTools().Color("dgreen") << Endl; Log() << kINFO << " Will not produce scatter plots ==> " << Endl; Log() << kINFO << "| The number of " << nvar << " input variables and " << ntgt << " target values would require " << nhists << " two-dimensional" << Endl; Log() << kINFO << "| histograms, which would occupy the computer's memory. Note that this" << Endl; Log() << kINFO << "| suppression does not have any consequences for your analysis, other" << Endl; Log() << kINFO << "| than not disposing of these scatter plots. You can modify the maximum" << Endl; Log() << kINFO << "| number of input variables allowed to generate scatter plots in your" << Endl; Log() << "| script via the command line:" << Endl; Log() << kINFO << "| \"(TMVA::gConfig().GetVariablePlotting()).fMaxNumOfAllowedVariablesForScatterPlots = ;\"" << gTools().Color("reset") << Endl; Log() << Endl; Log() << kINFO << "Some more output" << Endl; } Double_t timesRMS = gConfig().GetVariablePlotting().fTimesRMS; UInt_t nbins1D = gConfig().GetVariablePlotting().fNbins1D; UInt_t nbins2D = gConfig().GetVariablePlotting().fNbins2D; for (UInt_t var_tgt = 0; var_tgt < 2; var_tgt++) { // create the histos first for the variables, then for the targets UInt_t nloops = ( var_tgt == 0? nvar:ntgt ); // number of variables or number of targets for (UInt_t ivar=0; ivarGetName(); // add "target" in case of target variable (required for plotting macros) className += (ntgt == 1 && var_tgt == 1 ? "_target" : ""); // choose reasonable histogram ranges, by removing outliers TH1* h = 0; if (info.GetVarType() == 'I') { // special treatment for integer variables Int_t xmin = TMath::Nint( GetMin( ( var_tgt*nvar )+ivar) ); Int_t xmax = TMath::Nint( GetMax( ( var_tgt*nvar )+ivar) + 1 ); Int_t nbins = xmax - xmin; h = new TH1F( Form("%s__%s%s", myVari.Data(), className.Data(), transfType.Data()), info.GetTitle(), nbins, xmin, xmax ); } else { Double_t xmin = TMath::Max( GetMin( ( var_tgt*nvar )+ivar), mean - timesRMS*rms ); Double_t xmax = TMath::Min( GetMax( ( var_tgt*nvar )+ivar), mean + timesRMS*rms ); //std::cout << "Class="<GetXaxis()->SetTitle( gTools().GetXTitleWithUnit( GetVariableAxisTitle( info ), info.GetUnit() ) ); h->GetYaxis()->SetTitle( gTools().GetYTitleWithUnit( *h, info.GetUnit(), kFALSE ) ); hVars.at(cls).at((var_tgt*nvar)+ivar) = h; // profile and scatter plots if (nvar+ntgt <= (UInt_t)gConfig().GetVariablePlotting().fMaxNumOfAllowedVariablesForScatterPlots) { for (UInt_t v_t = 0; v_t < 2; v_t++) { UInt_t nl = ( v_t==0?nvar:ntgt ); UInt_t start = ( v_t==0? (var_tgt==0?ivar+1:0):(var_tgt==0?nl:ivar+1) ); for (UInt_t j=start; jGetXaxis()->SetTitle( gTools().GetXTitleWithUnit( GetVariableAxisTitle( info ), info .GetUnit() ) ); h2->GetYaxis()->SetTitle( gTools().GetXTitleWithUnit( GetVariableAxisTitle( infoj ), infoj.GetUnit() ) ); mycorr.at(cls).at((var_tgt*nvar)+ivar).at((v_t*nvar)+j) = h2; // profile plot TProfile* p = new TProfile( Form( "prof_%s_vs_%s_%s%s", myVarj.Data(), myVari.Data(), className.Data(), transfType.Data() ), Form( "profile %s versus %s (%s)%s", infoj.GetTitle().Data(), info.GetTitle().Data(), className.Data(), transfType.Data() ), nbins1D, rxmin, rxmax ); // info.GetMin(), info.GetMax() ); p->GetXaxis()->SetTitle( gTools().GetXTitleWithUnit( GetVariableAxisTitle( info ), info .GetUnit() ) ); p->GetYaxis()->SetTitle( gTools().GetXTitleWithUnit( GetVariableAxisTitle( infoj ), infoj.GetUnit() ) ); myprof.at(cls).at((var_tgt*nvar)+ivar).at((v_t*nvar)+j) = p; } } } } } } UInt_t nevts = events.size(); // compute correlation coefficient between target value and variables (regression only) std::vector xregmean ( nvar+1, 0 ); std::vector x2regmean( nvar+1, 0 ); std::vector xCregmean( nvar+1, 0 ); // fill the histograms (this approach should be faster than individual projection for (UInt_t ievt=0; ievtGetWeight(); Int_t cls = ev->GetClass(); // average correlation between first target and variables (so far only for single-target regression) if (ntgt == 1) { Float_t valr = ev->GetTarget(0); xregmean[nvar] += valr; x2regmean[nvar] += valr*valr; for (UInt_t ivar=0; ivarGetValue(ivar); xregmean[ivar] += vali; x2regmean[ivar] += vali*vali; xCregmean[ivar] += vali*valr; } } // fill correlation histograms for (UInt_t var_tgt = 0; var_tgt < 2; var_tgt++) { // create the histos first for the variables, then for the targets UInt_t nloops = ( var_tgt == 0? nvar:ntgt ); // number of variables or number of targets for (UInt_t ivar=0; ivarGetValue(ivar) : ev->GetTarget(ivar) ); // variable histos hVars.at(cls).at( ( var_tgt*nvar )+ivar)->Fill( vali, weight ); // correlation histos if (nvar+ntgt <= (UInt_t)gConfig().GetVariablePlotting().fMaxNumOfAllowedVariablesForScatterPlots) { for (UInt_t v_t = 0; v_t < 2; v_t++) { UInt_t nl = ( v_t==0 ? nvar : ntgt ); UInt_t start = ( v_t==0 ? (var_tgt==0?ivar+1:0) : (var_tgt==0?nl:ivar+1) ); for (UInt_t j=start; jGetValue(j) : ev->GetTarget(j) ); mycorr.at(cls).at( ( var_tgt*nvar )+ivar).at( ( v_t*nvar )+j)->Fill( vali, valj, weight ); myprof.at(cls).at( ( var_tgt*nvar )+ivar).at( ( v_t*nvar )+j)->Fill( vali, valj, weight ); } } } } } } // correlation analysis for ranking (single-target regression only) if (ntgt == 1) { for (UInt_t ivar=0; ivar<=nvar; ivar++) { xregmean[ivar] /= nevts; x2regmean[ivar] = x2regmean[ivar]/nevts - xregmean[ivar]*xregmean[ivar]; } for (UInt_t ivar=0; ivarAddRank( Rank( fDataSetInfo.GetVariableInfo(ivar).GetLabel(), abscor ) ); } if (nvar+ntgt <= (UInt_t)gConfig().GetVariablePlotting().fMaxNumOfAllowedVariablesForScatterPlots) { // compute also mutual information (non-linear correlation measure) fRanking.push_back( new Ranking( GetName() + "Transformation", "Mutual information" ) ); for (UInt_t ivar=0; ivarAddRank( Rank( fDataSetInfo.GetVariableInfo(ivar).GetLabel(), mi ) ); } // compute correlation ratio (functional correlations measure) fRanking.push_back( new Ranking( GetName() + "Transformation", "Correlation Ratio" ) ); for (UInt_t ivar=0; ivarAddRank( Rank( fDataSetInfo.GetVariableInfo(ivar).GetLabel(), cr ) ); } // additionally compute correlation ratio from transposed histograms since correlation ratio is asymmetric fRanking.push_back( new Ranking( GetName() + "Transformation", "Correlation Ratio (T)" ) ); for (UInt_t ivar=0; ivarAddRank( Rank( fDataSetInfo.GetVariableInfo(ivar).GetLabel(), cr ) ); delete h2T; } } } // computes ranking of input variables // separation for 2-class classification else if (fDataSetInfo.GetNClasses() == 2 && fDataSetInfo.GetClassInfo("Signal") != NULL && fDataSetInfo.GetClassInfo("Background") != NULL ) { // TODO: ugly hack.. adapt to new framework fRanking.push_back( new Ranking( GetName() + "Transformation", "Separation" ) ); for (UInt_t i=0; iGetNumber()).at(i), hVars.at(fDataSetInfo.GetClassInfo("Background")->GetNumber()).at(i) ); fRanking.back()->AddRank( Rank( hVars.at(fDataSetInfo.GetClassInfo("Signal")->GetNumber()).at(i)->GetTitle(), sep ) ); } } // for regression compute performance from correlation with target value // write histograms TDirectory* localDir = theDirectory; if (theDirectory == 0) { // create directory in root dir fRootBaseDir->cd(); TString outputDir = TString("InputVariables"); TListIter trIt(&fTransformations); while (VariableTransformBase *trf = (VariableTransformBase*) trIt()) outputDir += "_" + TString(trf->GetShortName()); TString uniqueOutputDir = outputDir; Int_t counter = 0; TObject* o = NULL; while( (o = fRootBaseDir->FindObject(uniqueOutputDir)) != 0 ){ uniqueOutputDir = outputDir+Form("_%d",counter); Log() << kINFO << "A " << o->ClassName() << " with name " << o->GetName() << " already exists in " << fRootBaseDir->GetPath() << ", I will try with "<FindObject(outputDir); // if (o != 0) { // Log() << kFATAL << "A " << o->ClassName() << " with name " << o->GetName() << " already exists in " // << fRootBaseDir->GetPath() << "("<mkdir( uniqueOutputDir ); localDir->cd(); Log() << kVERBOSE << "Create and switch to directory " << localDir->GetPath() << Endl; } else { theDirectory->cd(); } for (UInt_t i=0; iWrite(); hVars.at(cls).at(i)->SetDirectory(0); delete hVars.at(cls).at(i); } } } // correlation plots have dedicated directory if (nvar+ntgt <= (UInt_t)gConfig().GetVariablePlotting().fMaxNumOfAllowedVariablesForScatterPlots) { localDir = localDir->mkdir( "CorrelationPlots" ); localDir ->cd(); Log() << kINFO << "Create scatter and profile plots in target-file directory: " << Endl; Log() << kINFO << localDir->GetPath() << Endl; for (UInt_t i=0; iWrite(); mycorr.at(cls).at(i).at(j)->SetDirectory(0); delete mycorr.at(cls).at(i).at(j); } if (myprof.at(cls).at(i).at(j) != 0) { myprof.at(cls).at(i).at(j)->Write(); myprof.at(cls).at(i).at(j)->SetDirectory(0); delete myprof.at(cls).at(i).at(j); } } } } } if (theDirectory != 0 ) theDirectory->cd(); else fRootBaseDir->cd(); } //_______________________________________________________________________ std::vector* TMVA::TransformationHandler::GetTransformationStringsOfLastTransform() const { // returns string for transformation VariableTransformBase* trf = ((VariableTransformBase*)GetTransformationList().Last()); if (!trf) return 0; else return trf->GetTransformationStrings( fTransformationsReferenceClasses.back() ); } //_______________________________________________________________________ const char* TMVA::TransformationHandler::GetNameOfLastTransform() const { // returns string for transformation VariableTransformBase* trf = ((VariableTransformBase*)GetTransformationList().Last()); if (!trf) return 0; else return trf->GetName(); } //_______________________________________________________________________ void TMVA::TransformationHandler::WriteToStream( std::ostream& o ) const { // write transformatino to stream TListIter trIt(&fTransformations); std::vector< Int_t >::const_iterator rClsIt = fTransformationsReferenceClasses.begin(); o << "NTransformtations " << fTransformations.GetSize() << std::endl << std::endl; ClassInfo* ci; UInt_t i = 1; while (VariableTransformBase *trf = (VariableTransformBase*) trIt()) { o << "#TR -*-*-*-*-*-*-* transformation " << i++ << ": " << trf->GetName() << " -*-*-*-*-*-*-*-" << std::endl; trf->WriteTransformationToStream(o); ci = fDataSetInfo.GetClassInfo( (*rClsIt) ); TString clsName; if (ci == 0 ) clsName = "AllClasses"; else clsName = ci->GetName(); o << "ReferenceClass " << clsName << std::endl; rClsIt++; } } //_______________________________________________________________________ void TMVA::TransformationHandler::AddXMLTo( void* parent ) const { // XML node describing the transformation // return; if(!parent) return; void* trfs = gTools().AddChild(parent, "Transformations"); gTools().AddAttr( trfs, "NTransformations", fTransformations.GetSize() ); TListIter trIt(&fTransformations); while (VariableTransformBase *trf = (VariableTransformBase*) trIt()) trf->AttachXMLTo(trfs); } //_______________________________________________________________________ void TMVA::TransformationHandler::ReadFromStream( std::istream& ) { //VariableTransformBase* trf = ((VariableTransformBase*)GetTransformationList().Last()); //trf->ReadTransformationFromStream(fin); Log() << kFATAL << "Read transformations not implemented" << Endl; // TODO } //_______________________________________________________________________ void TMVA::TransformationHandler::ReadFromXML( void* trfsnode ) { void* ch = gTools().GetChild( trfsnode ); while(ch) { Int_t idxCls = -1; TString trfname; gTools().ReadAttr(ch, "Name", trfname); VariableTransformBase* newtrf = 0; if (trfname == "Decorrelation" ) { newtrf = new VariableDecorrTransform(fDataSetInfo); } else if (trfname == "PCA" ) { newtrf = new VariablePCATransform(fDataSetInfo); } else if (trfname == "Gauss" ) { newtrf = new VariableGaussTransform(fDataSetInfo); } else if (trfname == "Uniform" ) { newtrf = new VariableGaussTransform(fDataSetInfo, "Uniform"); } else if (trfname == "Normalize" ) { newtrf = new VariableNormalizeTransform(fDataSetInfo); } else if (trfname == "Rearrange" ) { newtrf = new VariableRearrangeTransform(fDataSetInfo); } else if (trfname != "None") { } else { Log() << kFATAL << " Variable transform '" << trfname << "' unknown." << Endl; } newtrf->ReadFromXML( ch ); AddTransformation( newtrf, idxCls ); ch = gTools().GetNextChild(ch); } } //_______________________________________________________________________ void TMVA::TransformationHandler::PrintVariableRanking() const { // prints ranking of input variables Log() << kINFO << " " << Endl; Log() << kINFO << "Ranking input variables (method unspecific)..." << Endl; std::vector::const_iterator it = fRanking.begin(); for (; it != fRanking.end(); it++) (*it)->Print(); } //_______________________________________________________________________ Double_t TMVA::TransformationHandler::GetMean( Int_t ivar, Int_t cls ) const { try { return fVariableStats.at(cls).at(ivar).fMean; } catch(...) { try { return fVariableStats.at(fNumC-1).at(ivar).fMean; } catch(...) { Log() << kWARNING << "Inconsistent variable state when reading the mean value. " << Endl; } } Log() << kWARNING << "Inconsistent variable state when reading the mean value. Value 0 given back" << Endl; return 0; } //_______________________________________________________________________ Double_t TMVA::TransformationHandler::GetRMS( Int_t ivar, Int_t cls ) const { try { return fVariableStats.at(cls).at(ivar).fRMS; } catch(...) { try { return fVariableStats.at(fNumC-1).at(ivar).fRMS; } catch(...) { Log() << kWARNING << "Inconsistent variable state when reading the RMS value. " << Endl; } } Log() << kWARNING << "Inconsistent variable state when reading the RMS value. Value 0 given back" << Endl; return 0; } //_______________________________________________________________________ Double_t TMVA::TransformationHandler::GetMin( Int_t ivar, Int_t cls ) const { try { return fVariableStats.at(cls).at(ivar).fMin; } catch(...) { try { return fVariableStats.at(fNumC-1).at(ivar).fMin; } catch(...) { Log() << kWARNING << "Inconsistent variable state when reading the minimum value. " << Endl; } } Log() << kWARNING << "Inconsistent variable state when reading the minimum value. Value 0 given back" << Endl; return 0; } //_______________________________________________________________________ Double_t TMVA::TransformationHandler::GetMax( Int_t ivar, Int_t cls ) const { try { return fVariableStats.at(cls).at(ivar).fMax; } catch(...) { try { return fVariableStats.at(fNumC-1).at(ivar).fMax; } catch(...) { Log() << kWARNING << "Inconsistent variable state when reading the maximum value. " << Endl; } } Log() << kWARNING << "Inconsistent variable state when reading the maximum value. Value 0 given back" << Endl; return 0; }