/********************************************************************************** * Project : TMVA - a Root-integrated toolkit for multivariate data analysis * * Package : TMVA * * Exectuable: TMVAClassificationCategoryApplication * * * * This macro provides a simple example on how to use the trained classifiers * * within an analysis module * **********************************************************************************/ #include #include #include #include #include #include "TFile.h" #include "TTree.h" #include "TString.h" #include "TSystem.h" #include "TROOT.h" #include "TStopwatch.h" #include "TMVA/Reader.h" #include "TMVA/Tools.h" #include "TMVA/MethodCuts.h" // two types of category methods are implemented Bool_t UseOffsetMethod = kTRUE; int main() { // --------------------------------------------------------------- // default MVA methods to be trained + tested std::map Use; // --- Use["LikelihoodCat"] = 1; Use["FisherCat"] = 1; // --------------------------------------------------------------- std::cout << std::endl << "==> Start TMVAClassificationCategoryApplication" << std::endl; // --- Create the Reader object TMVA::Reader *reader = new TMVA::Reader( "!Color:!Silent" ); // Create a set of variables and spectators and declare them to the reader // - the variable names MUST corresponds in name and type to those given in the weight file(s) used Float_t var1, var2, var3, var4, eta; reader->AddVariable( "var1", &var1 ); reader->AddVariable( "var2", &var2 ); reader->AddVariable( "var3", &var3 ); reader->AddVariable( "var4", &var4 ); reader->AddSpectator( "eta", &eta ); // --- Book the MVA methods for (std::map::iterator it = Use.begin(); it != Use.end(); it++) { if (it->second) { TString methodName = it->first + " method"; TString weightfile = "weights/TMVAClassificationCategory_" + TString(it->first) + ".weights.xml"; reader->BookMVA( methodName, weightfile ); } } // Book output histograms UInt_t nbin = 100; std::map hist; hist["LikelihoodCat"] = new TH1F( "MVA_LikelihoodCat", "MVA_LikelihoodCat", nbin, -1, 0.9999 ); hist["FisherCat"] = new TH1F( "MVA_FisherCat", "MVA_FisherCat", nbin, -4, 4 ); // Prepare input tree (this must be replaced by your data source) // in this example, there is a toy tree with signal and one with background events // we'll later on use only the "signal" events for the test in this example. // TString fname( "" ); if (UseOffsetMethod) fname = "data/toy_sigbkg_categ_offset.root"; else fname = "data/toy_sigbkg_categ_varoff.root"; std::cout << "--- TMVAClassificationApp : Accessing " << fname << "!" << std::endl; TFile *input = TFile::Open(fname); if (!input) { std::cout << "ERROR: could not open data file: " << fname << std::endl; exit(1); } // --- Event loop // Prepare the tree // - here the variable names have to corresponds to your tree // - you can use the same variables as above which is slightly faster, // but of course you can use different ones and copy the values inside the event loop // TTree* theTree = (TTree*)input->Get("TreeS"); std::cout << "--- Use signal sample for evalution" << std::endl; theTree->SetBranchAddress( "var1", &var1 ); theTree->SetBranchAddress( "var2", &var2 ); theTree->SetBranchAddress( "var3", &var3 ); theTree->SetBranchAddress( "var4", &var4 ); theTree->SetBranchAddress( "eta", &eta ); // spectator std::cout << "--- Processing: " << theTree->GetEntries() << " events" << std::endl; TStopwatch sw; sw.Start(); for (Long64_t ievt=0; ievtGetEntries();ievt++) { if (ievt%1000 == 0) std::cout << "--- ... Processing event: " << ievt << std::endl; theTree->GetEntry(ievt); // --- Return the MVA outputs and fill into histograms for (std::map::iterator it = Use.begin(); it != Use.end(); it++) { if (!it->second) continue; TString methodName = it->first + " method"; hist[it->first]->Fill( reader->EvaluateMVA( methodName ) ); } } sw.Stop(); std::cout << "--- End of event loop: "; sw.Print(); // --- Write histograms TFile *target = new TFile( "TMVApp.root","RECREATE" ); for (std::map::iterator it = Use.begin(); it != Use.end(); it++) if (it->second) hist[it->first]->Write(); target->Close(); std::cout << "--- Created root file: \"TMVApp.root\" containing the MVA output histograms" << std::endl; delete reader; std::cout << "==> TMVAClassificationApplication is done!" << std::endl << std::endl; }