// Estimate the error in the integral of a fitted function // taking into account the errors in the parameters resulting from the fit. // The error is estimated also using the correlations values obtained from // the fit // // run the macro doing: // .x ErrorIntegral.C // Author: Lorenzo Moneta #include "TF1.h" #include "TH1D.h" #include "TVirtualFitter.h" #include "TMath.h" #include #include #include //#define HAVE_OLD_ROOT_VERSION TF1 * fitFunc; // fit function pointer const int NPAR = 2; // number of function parameters; //____________________________________________________________________ double f(double * x, double * p) { // function used to fit the data return p[1]*TMath::Sin( p[0] * x[0] ); } // when TF1::IntegralError was not available #ifdef HAVE_OLD_ROOT_VERSION //____________________________________________________________________ double df_dPar(double * x, double * p) { // derivative of the function w.r..t parameters // use calculated derivatives from TF1::GradientPar double grad[NPAR]; // p is used to specify for which parameter the derivative is computed int ipar = int(p[0] ); assert (ipar >=0 && ipar < NPAR ); assert(fitFunc); fitFunc->GradientPar(x, grad); return grad[ipar]; } //____________________________________________________________________ double IntegralError(int npar, double * c, double * errPar, double * covMatrix = 0) { // calculate the error on the integral given the parameter error and // the integrals of the gradient functions c[] double err2 = 0; for (int i = 0; i < npar; ++i) { if (covMatrix == 0) { // assume error are uncorrelated err2 += c[i] * c[i] * errPar[i] * errPar[i]; } else { double s = 0; for (int j = 0; j < npar; ++j) { s += covMatrix[i*npar + j] * c[j]; } err2 += c[i] * s; } } return TMath::Sqrt(err2); } #endif //____________________________________________________________________ void ErrorIntegral() { fitFunc = new TF1("f",f,0,1,NPAR); TH1D * h1 = new TH1D("h1","h1",50,0,1); double par[NPAR] = { 3.14, 1.}; fitFunc->SetParameters(par); h1->FillRandom("f",1000); // fill histogram sampling fitFunc fitFunc->SetParameter(0,3.); // vary a little the parameters h1->Fit(fitFunc); // fit the histogram h1->Draw(); // calculate the integral double integral = fitFunc->Integral(0,1); TVirtualFitter * fitter = TVirtualFitter::GetFitter(); assert(fitter != 0); double * covMatrix = fitter->GetCovarianceMatrix(); #ifdef HAVE_OLD_ROOT_VERSION // calculate now the error (needs the derivatives of the function // w..r.t the parameters) TF1 * deriv_par0 = new TF1("dfdp0",df_dPar,0,1,1); deriv_par0->SetParameter(0,0); TF1 * deriv_par1 = new TF1("dfdp1",df_dPar,0,1,1); deriv_par1->SetParameter(0,1.); double c[2]; c[0] = deriv_par0->Integral(0,1); c[1] = deriv_par1->Integral(0,1); double * epar = fitFunc->GetParErrors(); // without correlations double sigma_integral_0 = IntegralError(2,c,epar); // with correlations double sigma_integral = IntegralError(2,c,epar,covMatrix); #else // using new function in TF1 (from 12/6/2007) double sigma_integral = fitFunc->IntegralError(0,1); #endif std::cout << "Integral = " << integral << " +/- " << sigma_integral << std::endl; // estimated integral and error analytically double * p = fitFunc->GetParameters(); double ic = p[1]* (1-std::cos(p[0]) )/p[0]; double c0c = p[1] * (std::cos(p[0]) + p[0]*std::sin(p[0]) -1.)/p[0]/p[0]; double c1c = (1-std::cos(p[0]) )/p[0]; // estimated error with correlations double sic = std::sqrt( c0c*c0c * covMatrix[0] + c1c*c1c * covMatrix[3] + 2.* c0c*c1c * covMatrix[1]); if ( std::fabs(sigma_integral-sic) > 1.E-6*sic ) std::cout << " ERROR: test failed : different analytical integral : " << ic << " +/- " << sic << std::endl; }