//Fitting of a TGraph2D with a 3D straight line // // run this macro by doing: // // root>.x line3Dfit.C+ // //Author: L. Moneta // #include #include #include #include #include #include #include #include #include #include using namespace ROOT::Math; // define the parameteric line equation void line(double t, double *p, double &x, double &y, double &z) { // a parameteric line is define from 6 parameters but 4 are independent // x0,y0,z0,z1,y1,z1 which are the coordinates of two points on the line // can choose z0 = 0 if line not parallel to x-y plane and z1 = 1; x = p[0] + p[1]*t; y = p[2] + p[3]*t; z = t; } // calculate distance line-point double distance2(double x,double y,double z, double *p) { // distance line point is D= | (xp-x0) cross ux | // where ux is direction of line and x0 is a point in the line (like t = 0) XYZVector xp(x,y,z); XYZVector x0(p[0], p[2], 0. ); XYZVector x1(p[0] + p[1], p[2] + p[3], 1. ); XYZVector u = (x1-x0).Unit(); double d2 = ((xp-x0).Cross(u)) .Mag2(); return d2; } bool first = true; // function to be minimized void SumDistance2(int &, double *, double & sum, double * par, int ) { // the TGraph must be a global variable TGraph2D * gr = dynamic_cast( (TVirtualFitter::GetFitter())->GetObjectFit() ); assert(gr != 0); double * x = gr->GetX(); double * y = gr->GetY(); double * z = gr->GetZ(); int npoints = gr->GetN(); sum = 0; for (int i = 0; i < npoints; ++i) { double d = distance2(x[i],y[i],z[i],par); sum += d; #ifdef DEBUG if (first) std::cout << "point " << i << "\t" << x[i] << "\t" << y[i] << "\t" << z[i] << "\t" << std::sqrt(d) << std::endl; #endif } if (first) std::cout << "Total sum2 = " << sum << std::endl; first = false; } void line3Dfit() { gStyle->SetOptStat(0); gStyle->SetOptFit(); //double e = 0.1; Int_t nd = 10000; // double xmin = 0; double ymin = 0; // double xmax = 10; double ymax = 10; TGraph2D * gr = new TGraph2D(); // Fill the 2D graph double p0[4] = {10,20,1,2}; // generate graph with the 3d points for (Int_t N=0; NUniform(0,10); line(t,p0,x,y,z); double err = 1; // do a gaussian smearing around the points in all coordinates x += gRandom->Gaus(0,err); y += gRandom->Gaus(0,err); z += gRandom->Gaus(0,err); gr->SetPoint(N,x,y,z); //dt->SetPointError(N,0,0,err); } // fit the graph now TVirtualFitter *min = TVirtualFitter::Fitter(0,4); min->SetObjectFit(gr); min->SetFCN(SumDistance2); Double_t arglist[10]; arglist[0] = 3; min->ExecuteCommand("SET PRINT",arglist,1); double pStart[4] = {1,1,1,1}; min->SetParameter(0,"x0",pStart[0],0.01,0,0); min->SetParameter(1,"Ax",pStart[1],0.01,0,0); min->SetParameter(2,"y0",pStart[2],0.01,0,0); min->SetParameter(3,"Ay",pStart[3],0.01,0,0); arglist[0] = 1000; // number of function calls arglist[1] = 0.001; // tolerance min->ExecuteCommand("MIGRAD",arglist,2); //if (minos) min->ExecuteCommand("MINOS",arglist,0); int nvpar,nparx; double amin,edm, errdef; min->GetStats(amin,edm,errdef,nvpar,nparx); min->PrintResults(1,amin); gr->Draw("p0"); // get fit parameters double parFit[4]; for (int i = 0; i <4; ++i) parFit[i] = min->GetParameter(i); // draw the fitted line int n = 1000; double t0 = 0; double dt = 10; TPolyLine3D *l = new TPolyLine3D(n); for (int i = 0; i SetPoint(i,x,y,z); } l->SetLineColor(kRed); l->Draw("same"); // draw original line TPolyLine3D *l0 = new TPolyLine3D(n); for (int i = 0; i SetPoint(i,x,y,z); } l0->SetLineColor(kBlue); l0->Draw("same"); } int main() { line3Dfit(); }