// Test program for the classes TUnfold, TUnfoldSys // Author: Stefan Schmitt // DESY, 14.10.2008 // Version 16, parallel to changes in TUnfold // // History: // Version 15, with automated L-curve scan // Version 14, with changes in TUnfoldSys.cxx // Version 13, include test of systematic errors // Version 12, catch error when defining the input // Version 11, print chi**2 and number of degrees of freedom // Version 10, with bug-fix in TUnfold.cxx // Version 9, with bug-fix in TUnfold.cxx and TUnfold.h // Version 8, with bug-fix in TUnfold.cxx and TUnfold.h // Version 7, with bug-fix in TUnfold.cxx and TUnfold.h // Version 6a, fix problem with dynamic array allocation under windows // Version 6, bug-fixes in TUnfold.C // Version 5, replace main() by testUnfold1() // Version 4, with bug-fix in TUnfold.C // Version 3, with bug-fix in TUnfold.C // Version 2, with changed ScanLcurve() arguments // Version 1, remove L curve analysis, use ScanLcurve() method instead // Version 0, L curve analysis included here #include #include #include #include #include #include #include #include #include #include // #define VERBOSE_LCURVE_SCAN using namespace std; /////////////////////////////////////////////////////////////////////// // // Test program for the classes TUnfold, TUnfoldSys // // (1) Generate Monte Carlo and Data events // The events consist of // signal // background // // The signal is a resonance. It is generated with a Breit-Wigner, // smeared by a Gaussian // // (2) Unfold the data. The result is: // The background level // The shape of the resonance, corrected for detector effects // // Systematic errors from the MC shape variation are included // and propagated to the result // // (3) fit the unfolded distribution, including the correlation matrix // // (4) save six plots to a file testUnfold1.ps // 1 2 3 // 4 5 6 // 1: 2d-plot of the matrix decsribing the migrations // 2: generator-level distributions // blue: unfolded data, total errors // green: unfolded data, statistical errors // red: generated data // black: fit to green data points // 3: detector level distributions // blue: unfoldede data, folded back through the matrix // black: Monte Carlo (with wrong peal position) // blue: data // 4: global correlation coefficients // 5: chi**2 as a function of log(tau) // the star indicates the final choice of tau // 6: the L curve // /////////////////////////////////////////////////////////////////////// TRandom *rnd=0; TH2D *gHistInvEMatrix; TVirtualFitter *gFitter=0; void chisquare_corr(Int_t &npar, Double_t * /*gin */, Double_t &f, Double_t *u, Int_t /*flag */) { // Minimization function for H1s using a Chisquare method // only one-dimensional histograms are supported // Corelated errors are taken from an external inverse covariance matrix // stored in a 2-dimensional histogram Double_t x; TH1 *hfit = (TH1*)gFitter->GetObjectFit(); TF1 *f1 = (TF1*)gFitter->GetUserFunc(); f1->InitArgs(&x,u); npar = f1->GetNpar(); f = 0; Int_t npfit = 0; Int_t nPoints=hfit->GetNbinsX(); Double_t *df=new Double_t[nPoints]; for (Int_t i=0;iGetBinCenter(i+1); TF1::RejectPoint(kFALSE); df[i] = f1->EvalPar(&x,u)-hfit->GetBinContent(i+1); if (TF1::RejectedPoint()) df[i]=0.0; else npfit++; } for (Int_t i=0;iGetBinContent(i+1,j+1); } } delete[] df; f1->SetNumberFitPoints(npfit); } Double_t bw_func(Double_t *x,Double_t *par) { Double_t dm=x[0]-par[1]; return par[0]/(dm*dm+par[2]*par[2]); } // generate an event // output: // negative mass: background event // positive mass: signal event Double_t GenerateEvent(Double_t bgr, // relative fraction of background Double_t mass, // peak position Double_t gamma) // peak width { Double_t t; if(rnd->Rndm()>bgr) { // generate signal event // with positive mass do { do { t=rnd->Rndm(); } while(t>=1.0); t=TMath::Tan((t-0.5)*TMath::Pi())*gamma+mass; } while(t<=0.0); return t; } else { // generate background event // generate events following a power-law distribution // f(E) = K * TMath::power((E0+E),N0) static Double_t const E0=2.4; static Double_t const N0=2.9; do { do { t=rnd->Rndm(); } while(t>=1.0); // the mass is returned negative // In our example a convenient way to indicate it is a background event. t= -(TMath::Power(1.-t,1./(1.-N0))-1.0)*E0; } while(t>=0.0); return t; } } // smear the event to detector level // input: // mass on generator level (mTrue>0 !) // output: // mass on detector level Double_t DetectorEvent(Double_t mTrue) { // smear by double-gaussian static Double_t frac=0.1; static Double_t wideBias=0.03; static Double_t wideSigma=0.5; static Double_t smallBias=0.0; static Double_t smallSigma=0.1; if(rnd->Rndm()>frac) { return rnd->Gaus(mTrue+smallBias,smallSigma); } else { return rnd->Gaus(mTrue+wideBias,wideSigma); } } int testUnfold1() { // switch on histogram errors TH1::SetDefaultSumw2(); // show fit result gStyle->SetOptFit(1111); // random generator rnd=new TRandom3(); // data and MC luminosity, cross-section Double_t const luminosityData=100000; Double_t const luminosityMC=1000000; Double_t const crossSection=1.0; Int_t const nDet=250; Int_t const nGen=100; Double_t const xminDet=0.0; Double_t const xmaxDet=10.0; Double_t const xminGen=0.0; Double_t const xmaxGen=10.0; //============================================ // generate MC distribution // TH1D *histMgenMC=new TH1D("MgenMC",";mass(gen)",nGen,xminGen,xmaxGen); TH1D *histMdetMC=new TH1D("MdetMC",";mass(det)",nDet,xminDet,xmaxDet); TH2D *histMdetGenMC=new TH2D("MdetgenMC",";mass(det);mass(gen)", nDet,xminDet,xmaxDet,nGen,xminGen,xmaxGen); Int_t neventMC=rnd->Poisson(luminosityMC*crossSection); for(Int_t i=0;iFill(mGen,luminosityData/luminosityMC); // reconstructed MC distribution (for comparison only) histMdetMC->Fill(mDet,luminosityData/luminosityMC); // matrix describing how the generator input migrates to the // reconstructed level. Unfolding input. // NOTE on underflow/overflow bins: // (1) the detector level under/overflow bins are used for // normalisation ("efficiency" correction) // in our toy example, these bins are populated from tails // of the initial MC distribution. // (2) the generator level underflow/overflow bins are // unfolded. In this example: // underflow bin: background events reconstructed in the detector // overflow bin: signal events generated at masses > xmaxDet // for the unfolded result these bins will be filled // -> the background normalisation will be contained in the underflow bin histMdetGenMC->Fill(mDet,mGen,luminosityData/luminosityMC); } //============================================ // generate alternative MC // this will be used to derive a systematic error due to MC // parameter uncertainties TH2D *histMdetGenSysMC=new TH2D("MdetgenSysMC",";mass(det);mass(gen)", nDet,xminDet,xmaxDet,nGen,xminGen,xmaxGen); neventMC=rnd->Poisson(luminosityMC*crossSection); for(Int_t i=0;iFill(mDet,mGen,luminosityData/luminosityMC); } //============================================ // generate data distribution // TH1D *histMgenData=new TH1D("MgenData",";mass(gen)",nGen,xminGen,xmaxGen); TH1D *histMdetData=new TH1D("MdetData",";mass(det)",nDet,xminDet,xmaxDet); Int_t neventData=rnd->Poisson(luminosityData*crossSection); for(Int_t i=0;iFill(mGen); // reconstructed mass, unfolding input histMdetData->Fill(mDet); } //========================================================================= // set up the unfolding // define migration matrix TUnfoldSys unfold(histMdetGenMC,TUnfold::kHistMapOutputVert); // define input and bias scame // do not use the bias, because MC peak may be at the wrong place // watch out for error codes returned by the SetInput method // errors larger or equal 10000 are fatal: // the data points specified as input are not sufficient to constrain the // unfolding process if(unfold.SetInput(histMdetData)>=10000) { std::cout<<"Unfolding result may be wrong\n"; } //======================================================================== // the unfolding is done here // // scan L curve and find best point Int_t nScan=30; // use automatic L-curve scan: start with taumin=taumax=0.0 Double_t tauMin=0.0; Double_t tauMax=0.0; Int_t iBest; TSpline *logTauX,*logTauY; TGraph *lCurve; // if required, report Info messages (for debugging the L-curve scan) #ifdef VERBOSE_LCURVE_SCAN Int_t oldinfo=gErrorIgnoreLevel; gErrorIgnoreLevel=kInfo; #endif // this method scans the parameter tau and finds the kink in the L curve // finally, the unfolding is done for the best choice of tau iBest=unfold.ScanLcurve(nScan,tauMin,tauMax,&lCurve,&logTauX,&logTauY); // if required, switch to previous log-level #ifdef VERBOSE_LCURVE_SCAN gErrorIgnoreLevel=oldinfo; #endif //========================================================================== // define a correlated systematic error // for example, assume there is a 10% correlated error for all reconstructed // masses larger than 7 Double_t SYS_ERROR1_MSTART=6; Double_t SYS_ERROR1_SIZE=0.1; TH2D *histMdetGenSys1=new TH2D("Mdetgensys1",";mass(det);mass(gen)", nDet,xminDet,xmaxDet,nGen,xminGen,xmaxGen); for(Int_t i=0;i<=nDet+1;i++) { if(histMdetData->GetBinCenter(i)>=SYS_ERROR1_MSTART) { for(Int_t j=0;j<=nGen+1;j++) { histMdetGenSys1->SetBinContent(i,j,SYS_ERROR1_SIZE); } } } unfold.AddSysError(histMdetGenSysMC,"SYSERROR_MC",TUnfold::kHistMapOutputVert, TUnfoldSys::kSysErrModeMatrix); unfold.AddSysError(histMdetGenSys1,"SYSERROR1",TUnfold::kHistMapOutputVert, TUnfoldSys::kSysErrModeRelative); //========================================================================== // print some results // std::cout<<"tau="<GetKnot(iBest,t[0],x[0]); logTauY->GetKnot(iBest,t[0],y[0]); TGraph *bestLcurve=new TGraph(1,x,y); TGraph *bestLogTauLogChi2=new TGraph(1,t,x); //========================================================================== // retreive results into histograms, using a bin map // // the binMap maps the output of the unfolding to the final histogram bins // // In this example, the underflow and overflow bin are discarded, // whereas the other bins are just copied. // // This procedure is important for determining the inverse of the // covariance matrix. The covariance matrix is used for a fit later // on. Also, the global // correlation corefficients depend on the proper mapping Int_t *binMap=new Int_t[nGen+2]; for(Int_t i=1;i<=nGen;i++) binMap[i]=i; binMap[0]=-1; // discarde underflow bin (here: the background normalisation) binMap[nGen+1]=-1; // discarde overflow bin (here: bins with mass>10) // get unfolded distribution using the binMap TH1D *histMunfold=new TH1D("Unfolded",";mass(gen)",nGen,xminGen,xmaxGen); unfold.GetOutput(histMunfold,binMap); // get unfolding result, folded back TH1D *histMdetFold=unfold.GetFoldedOutput("FoldedBack",";mass(det)", xminDet,xmaxDet); // get error matrix (input distribution [stat] errors only) // using the binMap TH2D *histEmatData=new TH2D("EmatData",";mass(gen);mass(gen)", nGen,xminGen,xmaxGen,nGen,xminGen,xmaxGen); unfold.GetEmatrix(histEmatData,binMap); // get total error matrix: // migration matrix uncorrelated and colrrelated systematic errors // added inquadrature with the data statistical errors TH2D *histEmatTotal=new TH2D("EmatTotal",";mass(gen);mass(gen)", nGen,xminGen,xmaxGen,nGen,xminGen,xmaxGen); unfold.GetEmatrixTotal(histEmatTotal,binMap); // create data histogram with the total errors TH1D *histTotalError= new TH1D("TotalError",";mass(gen)",nGen,xminGen,xmaxGen); for(Int_t bin=1;bin<=nGen;bin++) { histTotalError->SetBinContent(bin,histMunfold->GetBinContent(bin)); histTotalError->SetBinError (bin,TMath::Sqrt(histEmatTotal->GetBinContent(bin,bin))); } // get global correlation coefficients and inverse of covariance // matrix. // !!! these quantities do not include the systematic errors !!! gHistInvEMatrix=new TH2D("invEmat",";mass(gen);mass(gen)", nGen,xminGen,xmaxGen,nGen,xminGen,xmaxGen); TH1D *histRhoi=new TH1D("rho_I",";mass(gen)",nGen,xminGen,xmaxGen); unfold.GetRhoI(histRhoi,gHistInvEMatrix,binMap); // remove the binMap, it is not needed anymore delete[] binMap; binMap=0; // just in case You think it is still defined //====================================================================== // fit Breit-Wigner shape to unfolded data, using the full error matrix // here we use a "user" chi**2 function to take into account // the full covariance matrix // !!! Note: the systematic errors are not included in this fit // !!! one would have to invert the matrix histEmatTotal // !!! to include syst. errors in the fit gFitter=TVirtualFitter::Fitter(histMunfold); gFitter->SetFCN(chisquare_corr); TF1 *bw=new TF1("bw",bw_func,xminGen,xmaxGen,3); bw->SetParameter(0,1000.); bw->SetParameter(1,3.8); bw->SetParameter(2,0.2); // for (wrong!) fitting without correlations, drop the option "U" // here. histMunfold->Fit(bw,"UE"); //===================================================================== // plot some histograms TCanvas output; output.Divide(3,2); // Show the matrix which connects input and output // There are overflow bins at the bottom, not shown in the plot // These contain the background shape. // The overflow bins to the left and right contain // events which are not reconstructed. These are necessary for proper MC // normalisation output.cd(1); histMdetGenMC->Draw("BOX"); // draw generator-level distribution: // data (red) [for real data this is not available] // MC input (black) [with completely wrong peak position and shape] // unfolded data (blue) output.cd(2); histTotalError->SetLineColor(kBlue); histTotalError->Draw("E"); histMunfold->SetLineColor(kGreen); histMunfold->Draw("SAME E1"); histMgenData->SetLineColor(kRed); histMgenData->Draw("SAME"); histMgenMC->Draw("SAME HIST"); // show detector level distributions // data (red) // MC (black) [with completely wrong peak position and shape] // unfolded data (blue) output.cd(3); histMdetFold->SetLineColor(kBlue); histMdetFold->Draw(); histMdetMC->Draw("SAME HIST"); TH1D *histInput=unfold.GetInput("Minput",";mass(det)",xminDet,xmaxDet); histInput->SetLineColor(kRed); histInput->Draw("SAME"); // show correlation coefficients output.cd(4); histRhoi->Draw(); // show tau as a function of chi**2 output.cd(5); logTauX->Draw(); bestLogTauLogChi2->SetMarkerColor(kRed); bestLogTauLogChi2->Draw("*"); // show the L curve output.cd(6); lCurve->Draw("AL"); bestLcurve->SetMarkerColor(kRed); bestLcurve->Draw("*"); output.SaveAs("testUnfold1.ps"); return 0; }