// This macro shows the use of an ANN for regression analysis: //given a set {i} of input vectors i and a set {o} of output vectors o, //one looks for the unknown function f(i)=o. //The ANN can approximate this function; TMLPAnalyzer::DrawTruthDeviation //methods can be used to evaluate the quality of the approximation. // //For simplicity, we use a known function to create test and training data. //In reality this function is usually not known, and the data comes e.g. //from measurements. // //Axel Naumann, 2005-02-02 Double_t theUnknownFunction(Double_t x, Double_t y) { return sin((1.7+x)*(x-0.3)-2.3*(y+0.7)); } void mlpRegression() { // create a tree with train and test data. // we have two input parameters x and y, // and one output value f(x,y) TNtuple* t=new TNtuple("tree","tree","x:y:f"); TRandom r; for (Int_t i=0; i<1000; i++) { Float_t x=r.Rndm(); Float_t y=r.Rndm(); // fill it with x, y, and f(x,y) - usually this function // is not known, and the value of f given an x and a y comes // e.g. from measurements t->Fill(x,y,theUnknownFunction(x,y)); } // create ANN TMultiLayerPerceptron* mlp=new TMultiLayerPerceptron("x,y:10:8:f",t, "Entry$%2","(Entry$%2)==0"); mlp->Train(150,"graph update=10"); // analyze it TMLPAnalyzer* mlpa=new TMLPAnalyzer(mlp); mlpa->GatherInformations(); mlpa->CheckNetwork(); mlpa->DrawDInputs(); // draw statistics shows the quality of the ANN's approximation TCanvas* cIO=new TCanvas("TruthDeviation", "TruthDeviation"); cIO->Divide(2,2); cIO->cd(1); // draw the difference between the ANN's output for (x,y) and // the true value f(x,y), vs. f(x,y), as TProfiles mlpa->DrawTruthDeviations(); cIO->cd(2); // draw the difference between the ANN's output for (x,y) and // the true value f(x,y), vs. x, and vs. y, as TProfiles mlpa->DrawTruthDeviationInsOut(); cIO->cd(3); // draw a box plot of the ANN's output for (x,y) vs f(x,y) mlpa->GetIOTree()->Draw("Out.Out0-True.True0:True.True0>>hDelta","","goff"); TH2F* hDelta=(TH2F*)gDirectory->Get("hDelta"); hDelta->SetTitle("Difference between ANN output and truth vs. truth"); hDelta->Draw("BOX"); cIO->cd(4); // draw difference of ANN's output for (x,y) vs f(x,y) assuming // the ANN can extrapolate Double_t vx[225]; Double_t vy[225]; Double_t delta[225]; Double_t v[2]; for (Int_t ix=0; ix<15; ix++) { v[0]=ix/5.-1.; for (Int_t iy=0; iy<15; iy++) { v[1]=iy/5.-1.; Int_t idx=ix*15+iy; vx[idx]=v[0]; vy[idx]=v[1]; delta[idx]=mlp->Evaluate(0, v)-theUnknownFunction(v[0],v[1]); } } TGraph2D* g2Extrapolate=new TGraph2D("ANN extrapolation", "ANN extrapolation, ANN output - truth", 225, vx, vy, delta); g2Extrapolate->Draw("TRI2"); }