# This macro is an example of graphs in log scales with annotations. # # The begin_html presented results end_html # are predictions of invariant cross-section of Direct Photons produced # at RHIC energies, based on the universality of scaling function H(z). # # Authors: Michael Tokarev and Elena Potrebenikova (JINR Dubna) # # These Figures were published in JINR preprint E2-98-64, Dubna, # 1998 and submitted to CPC. # # Note that the way greek symbols, super/subscripts are obtained # illustrate the current limitations of Root in this area. # import ROOT from array import array from math import * NMAX = 20 Z = array( 'f', [0.]*NMAX ) HZ = array( 'f', [0.]*NMAX ) PT = array( 'f', [0.]*NMAX ) INVSIG = array( 'f', [0.]*NMAX ) NLOOP = 0 saves = {} #_______________________________________________________________________________ def zdemo(): global NLOOP global Z, HZ, PT, INVSIG global saves # Create a new canvas. c1 = ROOT.TCanvas( 'zdemo', 'Monte Carlo Study of Z scaling', 10, 40, 800, 600 ) c1.Range( 0, 0, 25, 18 ) c1.SetFillColor( 40 ) saves[ 'c1' ] = c1 # prevent deteletion at end of zdemo pl = ROOT.TPaveLabel( 1, 16.3, 24, 17.5, 'Z-scaling of Direct Photon Productions in pp Collisions at RHIC Energies', 'br' ) pl.SetFillColor(18) pl.SetTextFont(32) pl.SetTextColor(49) pl.Draw() saves[ 'pl' ] = pl t = ROOT.TLatex() t.SetTextFont(32) t.SetTextColor(1) t.SetTextSize(0.03) t.SetTextAlign(12) t.DrawLatex( 3.1, 15.5, 'M.Tokarev, E.Potrebenikova ') t.DrawLatex( 14., 15.5, 'JINR preprint E2-98-64, Dubna, 1998 ') saves[ 't' ] = t pad1 = ROOT.TPad( 'pad1', 'This is pad1', 0.02, 0.02, 0.48, 0.83, 33 ) pad2 = ROOT.TPad( 'pad2', 'This is pad2', 0.52, 0.02, 0.98, 0.83, 33 ) pad1.Draw() pad2.Draw() saves[ 'pad1' ] = pad1; saves[ 'pad2' ] = pad2 # # Cross-section of direct photon production in pp collisions at 500 GeV vs Pt # energ = 63 dens = 1.766 tgrad = 90. ptmin = 4. ptmax = 24. delp = 2. hz_calc( energ, dens, tgrad, ptmin, ptmax, delp ) pad1.cd() pad1.Range( -0.255174, -19.25, 2.29657, -6.75 ) pad1.SetLogx() pad1.SetLogy() # create a 2-d histogram to define the range pad1.DrawFrame( 1, 1e-18, 110, 1e-8 ) pad1.GetFrame().SetFillColor( 19 ) t = ROOT.TLatex() t.SetNDC() t.SetTextFont( 62 ) t.SetTextColor( 36 ) t.SetTextSize( 0.08 ) t.SetTextAlign( 12 ) t.DrawLatex( 0.6, 0.85, 'p - p' ) t.SetTextSize( 0.05 ) t.DrawLatex( 0.6, 0.79, 'Direct #gamma' ) t.DrawLatex( 0.6, 0.75, '#theta = 90^{o}' ) t.DrawLatex( 0.20, 0.45, 'Ed^{3}#sigma/dq^{3}' ) t.DrawLatex( 0.18, 0.40, '(barn/Gev^{2})' ) t.SetTextSize( 0.045 ) t.SetTextColor( ROOT.kBlue ) t.DrawLatex( 0.22, 0.260, '#sqrt{s} = 63(GeV)' ) t.SetTextColor( ROOT.kRed ) t.DrawLatex( 0.22, 0.205,'#sqrt{s} = 200(GeV)' ) t.SetTextColor( 6 ) t.DrawLatex( 0.22, 0.15, '#sqrt{s} = 500(GeV)' ) t.SetTextSize( 0.05 ) t.SetTextColor( 1 ) t.DrawLatex( 0.6, 0.06, 'q_{T} (Gev/c)' ) saves[ 't2' ] = t # note the label that is used! gr1 = ROOT.TGraph( NLOOP, PT, INVSIG ) gr1.SetLineColor( 38 ) gr1.SetMarkerColor( ROOT.kBlue ) gr1.SetMarkerStyle( 21 ) gr1.SetMarkerSize( 1.1 ) gr1.Draw( 'LP' ) saves[ 'gr1' ] = gr1 # # Cross-section of direct photon production in pp collisions at 200 GeV vs Pt # energ = 200 dens = 2.25 tgrad = 90. ptmin = 4. ptmax = 64. delp = 6. hz_calc( energ, dens, tgrad, ptmin, ptmax, delp ) gr2 = ROOT.TGraph( NLOOP, PT, INVSIG ) gr2.SetLineColor( 38 ) gr2.SetMarkerColor( ROOT.kRed ) gr2.SetMarkerStyle( 29 ) gr2.SetMarkerSize( 1.5 ) gr2.Draw( 'LP' ) saves[ 'gr2' ] = gr2 # # Cross-section of direct photon production in pp collisions at 500 GeV vs Pt # energ = 500 dens = 2.73 tgrad = 90. ptmin = 4. ptmax = 104. delp = 10. hz_calc( energ, dens, tgrad, ptmin, ptmax, delp ) gr3 = ROOT.TGraph( NLOOP, PT, INVSIG ) gr3.SetLineColor( 38 ) gr3.SetMarkerColor( 6 ) gr3.SetMarkerStyle( 8 ) gr3.SetMarkerSize( 1.1 ) gr3.Draw( 'LP' ) saves[ 'gr3' ] = gr3 dum = array( 'f', [0.] ) graph = ROOT.TGraph( 1, dum, dum ) graph.SetMarkerColor( ROOT.kBlue ) graph.SetMarkerStyle( 21 ) graph.SetMarkerSize( 1.1 ) graph.SetPoint( 0, 1.7, 1.e-16 ) graph.Draw( 'LP' ) saves[ 'graph' ] = graph graph = ROOT.TGraph( 1, dum, dum ) graph.SetMarkerColor( ROOT.kRed ) graph.SetMarkerStyle( 29 ) graph.SetMarkerSize( 1.5 ) graph.SetPoint( 0, 1.7, 2.e-17 ) graph.Draw( 'LP' ) saves[ 'graph2' ] = graph # note the label that is used! graph = ROOT.TGraph( 1, dum, dum ) graph.SetMarkerColor( 6 ) graph.SetMarkerStyle( 8 ) graph.SetMarkerSize( 1.1 ) graph.SetPoint( 0, 1.7, 4.e-18) graph.Draw( 'LP' ) saves[ 'graph3' ] = graph # note the label that is used! pad2.cd() pad2.Range( -0.43642, -23.75, 3.92778, -6.25 ) pad2.SetLogx() pad2.SetLogy() pad2.DrawFrame( 1, 1e-22, 3100, 1e-8 ) pad2.GetFrame().SetFillColor( 19 ) gr = ROOT.TGraph( NLOOP, Z, HZ ) gr.SetTitle( 'HZ vs Z' ) gr.SetFillColor( 19 ) gr.SetLineColor( 9 ) gr.SetMarkerColor( 50 ) gr.SetMarkerStyle( 29 ) gr.SetMarkerSize( 1.5 ) gr.Draw( 'LP' ) saves[ 'gr' ] = gr t = ROOT.TLatex() t.SetNDC() t.SetTextFont( 62 ) t.SetTextColor( 36 ) t.SetTextSize( 0.08 ) t.SetTextAlign( 12 ) t.DrawLatex( 0.6, 0.85, 'p - p' ) t.SetTextSize( 0.05 ) t.DrawLatex( 0.6, 0.79, 'Direct #gamma' ) t.DrawLatex( 0.6, 0.75, '#theta = 90^{o}' ) t.DrawLatex( 0.70, 0.55, 'H(z)' ) t.DrawLatex( 0.68, 0.50, '(barn)' ) t.SetTextSize( 0.045 ) t.SetTextColor( 46 ) t.DrawLatex( 0.20, 0.30, '#sqrt{s}, GeV' ) t.DrawLatex( 0.22, 0.26, '63' ) t.DrawLatex( 0.22, 0.22, '200' ) t.DrawLatex( 0.22, 0.18, '500' ) t.SetTextSize( 0.05 ) t.SetTextColor( 1 ) t.DrawLatex( 0.88, 0.06, 'z' ) saves[ 't3' ] = t # note the label that is used! c1.Modified() c1.Update() #_______________________________________________________________________________ def hz_calc( ENERG, DENS, TGRAD, PTMIN, PTMAX, DELP ): global NLOOP global Z, HZ, PT, INVSIG CSEFT= 1. GM1 = 0.00001 GM2 = 0.00001 A1 = 1. A2 = 1. ALX = 2. BETA = 1. KF1 = 8.E-7 KF2 = 5.215 MN = 0.9383 DEGRAD=0.01745329 # print 'ENR= %f DENS= %f PTMIN= %f PTMAX= %f DELP= %f ' % (ENERG,DENS,PTMIN,PTMAX,DELP) DNDETA= DENS MB1 = MN*A1 MB2 = MN*A2 EB1 = ENERG/2.*A1 EB2 = ENERG/2.*A2 M1 = GM1 M2 = GM2 THET = TGRAD*DEGRAD NLOOP = int((PTMAX-PTMIN)/DELP) for I in range(NLOOP): PT[I]=PTMIN+I*DELP PTOT = PT[I]/sin(THET) ETOT = sqrt(M1*M1 + PTOT*PTOT) PB1 = sqrt(EB1*EB1 - MB1*MB1) PB2 = sqrt(EB2*EB2 - MB2*MB2) P2P3 = EB2*ETOT+PB2*PTOT*cos(THET) P1P2 = EB2*EB1+PB2*PB1 P1P3 = EB1*ETOT-PB1*PTOT*cos(THET) X1 = P2P3/P1P2 X2 = P1P3/P1P2 Y1 = X1+sqrt(X1*X2*(1.-X1)/(1.-X2)) Y2 = X2+sqrt(X1*X2*(1.-X2)/(1.-X1)) S = (MB1*MB1)+2.*P1P2+(MB2*MB2) SMIN = 4.*((MB1*MB1)*(X1*X1) +2.*X1*X2*P1P2+(MB2*MB2)*(X2*X2)) SX1 = 4.*( 2*(MB1*MB1)*X1+2*X2*P1P2) SX2 = 4.*( 2*(MB2*MB2)*X2+2*X1*P1P2) SX1X2= 4.*(2*P1P2) DELM = pow((1.-Y1)*(1.-Y2),ALX) Z[I] = sqrt(SMIN)/DELM/pow(DNDETA,BETA) Y1X1 = 1. +X2*(1-2.*X1)/(2.*(Y1-X1)*(1.-X2)) Y1X2 = X1*(1-X1)/(2.*(Y1-X1)*(1.-X2)*(1.-X2)) Y2X1 = X2*(1-X2)/(2.*(Y2-X2)*(1.-X1)*(1.-X1)) Y2X2 = 1. +X1*(1-2.*X2)/(2.*(Y2-X2)*(1.-X1)) Y2X1X2= Y2X1*( (1.-2.*X2)/(X2*(1-X2)) -( Y2X2-1.)/(Y2-X2)) Y1X1X2= Y1X2*( (1.-2.*X1)/(X1*(1-X1)) -( Y1X1-1.)/(Y1-X1)) KX1=-DELM*(Y1X1*ALX/(1.-Y1) + Y2X1*ALX/(1.-Y2)) KX2=-DELM*(Y2X2*ALX/(1.-Y2) + Y1X2*ALX/(1.-Y1)) ZX1=Z[I]*(SX1/(2.*SMIN)-KX1/DELM) ZX2=Z[I]*(SX2/(2.*SMIN)-KX2/DELM) H1=ZX1*ZX2 HZ[I]=KF1/pow(Z[I],KF2) INVSIG[I]=(HZ[I]*H1*16.)/S # run if loaded as script if __name__ == '__main__': zdemo()