////////////////////////////////////////////////////////////////////////// // // 'BASIC FUNCTIONALITY' RooFit tutorial macro #102 // // Importing data from ROOT TTrees and THx histograms // // // // 07/2008 - Wouter Verkerke // ///////////////////////////////////////////////////////////////////////// #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooRealVar.h" #include "RooDataSet.h" #include "RooDataHist.h" #include "RooGaussian.h" #include "TCanvas.h" #include "RooPlot.h" #include "TTree.h" #include "TH1D.h" #include "TRandom.h" using namespace RooFit ; TH1* makeTH1() ; TTree* makeTTree() ; void rf102_dataimport() { //////////////////////////////////////////////////////// // I m p o r t i n g R O O T h i s t o g r a m s // //////////////////////////////////////////////////////// // I m p o r t T H 1 i n t o a R o o D a t a H i s t // --------------------------------------------------------- // Create a ROOT TH1 histogram TH1* hh = makeTH1() ; // Declare observable x RooRealVar x("x","x",-10,10) ; // Create a binned dataset that imports contents of TH1 and associates its contents to observable 'x' RooDataHist dh("dh","dh",x,Import(*hh)) ; // P l o t a n d f i t a R o o D a t a H i s t // --------------------------------------------------- // Make plot of binned dataset showing Poisson error bars (RooFit default) RooPlot* frame = x.frame(Title("Imported TH1 with Poisson error bars")) ; dh.plotOn(frame) ; // Fit a Gaussian p.d.f to the data RooRealVar mean("mean","mean",0,-10,10) ; RooRealVar sigma("sigma","sigma",3,0.1,10) ; RooGaussian gauss("gauss","gauss",x,mean,sigma) ; gauss.fitTo(dh) ; gauss.plotOn(frame) ; // P l o t a n d f i t a R o o D a t a H i s t w i t h i n t e r n a l e r r o r s // --------------------------------------------------------------------------------------------- // If histogram has custom error (i.e. its contents is does not originate from a Poisson process // but e.g. is a sum of weighted events) you can data with symmetric 'sum-of-weights' error instead // (same error bars as shown by ROOT) RooPlot* frame2 = x.frame(Title("Imported TH1 with internal errors")) ; dh.plotOn(frame2,DataError(RooAbsData::SumW2)) ; gauss.plotOn(frame2) ; // Please note that error bars shown (Poisson or SumW2) are for visualization only, the are NOT used // in a maximum likelihood fit // // A (binned) ML fit will ALWAYS assume the Poisson error interpretation of data (the mathematical definition // of likelihood does not take any external definition of errors). Data with non-unit weights can only be correctly // fitted with a chi^2 fit (see rf602_chi2fit.C) //////////////////////////////////////////////// // I m p o r t i n g R O O T T T r e e s // //////////////////////////////////////////////// // I m p o r t T T r e e i n t o a R o o D a t a S e t // ----------------------------------------------------------- TTree* tree = makeTTree() ; // Define 2nd observable y RooRealVar y("y","y",-10,10) ; // Construct unbinned dataset importing tree branches x and y matching between branches and RooRealVars // is done by name of the branch/RRV // // Note that ONLY entries for which x,y have values within their allowed ranges as defined in // RooRealVar x and y are imported. Since the y values in the import tree are in the range [-15,15] // and RRV y defines a range [-10,10] this means that the RooDataSet below will have less entries than the TTree 'tree' RooDataSet ds("ds","ds",RooArgSet(x,y),Import(*tree)) ; // P l o t d a t a s e t w i t h m u l t i p l e b i n n i n g c h o i c e s // ------------------------------------------------------------------------------------ // Print number of events in dataset ds.Print() ; // Print unbinned dataset with default frame binning (100 bins) RooPlot* frame3 = y.frame(Title("Unbinned data shown in default frame binning")) ; ds.plotOn(frame3) ; // Print unbinned dataset with custom binning choice (20 bins) RooPlot* frame4 = y.frame(Title("Unbinned data shown with custom binning")) ; ds.plotOn(frame4,Binning(20)) ; // Draw all frames on a canvas TCanvas* c = new TCanvas("rf102_dataimport","rf102_dataimport",800,800) ; c->Divide(2,2) ; c->cd(1) ; gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.4) ; frame->Draw() ; c->cd(2) ; gPad->SetLeftMargin(0.15) ; frame2->GetYaxis()->SetTitleOffset(1.4) ; frame2->Draw() ; c->cd(3) ; gPad->SetLeftMargin(0.15) ; frame3->GetYaxis()->SetTitleOffset(1.4) ; frame3->Draw() ; c->cd(4) ; gPad->SetLeftMargin(0.15) ; frame4->GetYaxis()->SetTitleOffset(1.4) ; frame4->Draw() ; } TH1* makeTH1() { // Create ROOT TH1 filled with a Gaussian distribution TH1D* hh = new TH1D("hh","hh",25,-10,10) ; for (int i=0 ; i<100 ; i++) { hh->Fill(gRandom->Gaus(0,3)) ; } return hh ; } TTree* makeTTree() { // Create ROOT TTree filled with a Gaussian distribution in x and a uniform distribution in y TTree* tree = new TTree("tree","tree") ; Double_t* px = new Double_t ; Double_t* py = new Double_t ; tree->Branch("x",px,"x/D") ; tree->Branch("y",py,"y/D") ; for (int i=0 ; i<100 ; i++) { *px = gRandom->Gaus(0,3) ; *py = gRandom->Uniform()*30 - 15 ; tree->Fill() ; } return tree ; }