////////////////////////////////////////////////////////////////////////// // // 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #307 // // Complete example with use of full p.d.f. with per-event errors // // // // 07/2008 - Wouter Verkerke // ///////////////////////////////////////////////////////////////////////// #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooRealVar.h" #include "RooDataSet.h" #include "RooGaussian.h" #include "RooGaussModel.h" #include "RooConstVar.h" #include "RooDecay.h" #include "RooLandau.h" #include "RooProdPdf.h" #include "RooHistPdf.h" #include "RooPlot.h" #include "TCanvas.h" #include "TAxis.h" #include "TH1.h" using namespace RooFit ; void rf307_fullpereventerrors() { // B - p h y s i c s p d f w i t h p e r - e v e n t G a u s s i a n r e s o l u t i o n // ---------------------------------------------------------------------------------------------- // Observables RooRealVar dt("dt","dt",-10,10) ; RooRealVar dterr("dterr","per-event error on dt",0.01,10) ; // Build a gaussian resolution model scaled by the per-event error = gauss(dt,bias,sigma*dterr) RooRealVar bias("bias","bias",0,-10,10) ; RooRealVar sigma("sigma","per-event error scale factor",1,0.1,10) ; RooGaussModel gm("gm1","gauss model scaled bt per-event error",dt,bias,sigma,dterr) ; // Construct decay(dt) (x) gauss1(dt|dterr) RooRealVar tau("tau","tau",1.548) ; RooDecay decay_gm("decay_gm","decay",dt,tau,gm,RooDecay::DoubleSided) ; // C o n s t r u c t e m p i r i c a l p d f f o r p e r - e v e n t e r r o r // ----------------------------------------------------------------- // Use landau p.d.f to get empirical distribution with long tail RooLandau pdfDtErr("pdfDtErr","pdfDtErr",dterr,RooConst(1),RooConst(0.25)) ; RooDataSet* expDataDterr = pdfDtErr.generate(dterr,10000) ; // Construct a histogram pdf to describe the shape of the dtErr distribution RooDataHist* expHistDterr = expDataDterr->binnedClone() ; RooHistPdf pdfErr("pdfErr","pdfErr",dterr,*expHistDterr) ; // C o n s t r u c t c o n d i t i o n a l p r o d u c t d e c a y _ d m ( d t | d t e r r ) * p d f ( d t e r r ) // ---------------------------------------------------------------------------------------------------------------------- // Construct production of conditional decay_dm(dt|dterr) with empirical pdfErr(dterr) RooProdPdf model("model","model",pdfErr,Conditional(decay_gm,dt)) ; // (Alternatively you could also use the landau shape pdfDtErr) //RooProdPdf model("model","model",pdfDtErr,Conditional(decay_gm,dt)) ; // S a m p l e, f i t a n d p l o t p r o d u c t m o d e l // ------------------------------------------------------------------ // Specify external dataset with dterr values to use model_dm as conditional p.d.f. RooDataSet* data = model.generate(RooArgSet(dt,dterr),10000) ; // F i t c o n d i t i o n a l d e c a y _ d m ( d t | d t e r r ) // --------------------------------------------------------------------- // Specify dterr as conditional observable model.fitTo(*data) ; // P l o t c o n d i t i o n a l d e c a y _ d m ( d t | d t e r r ) // --------------------------------------------------------------------- // Make two-dimensional plot of conditional p.d.f in (dt,dterr) TH1* hh_model = model.createHistogram("hh_model",dt,Binning(50),YVar(dterr,Binning(50))) ; hh_model->SetLineColor(kBlue) ; // Make projection of data an dt RooPlot* frame = dt.frame(Title("Projection of model(dt|dterr) on dt")) ; data->plotOn(frame) ; model.plotOn(frame) ; // Draw all frames on canvas TCanvas* c = new TCanvas("rf307_fullpereventerrors","rf307_fullperventerrors",800, 400); c->Divide(2) ; c->cd(1) ; gPad->SetLeftMargin(0.20) ; hh_model->GetZaxis()->SetTitleOffset(2.5) ; hh_model->Draw("surf") ; c->cd(2) ; gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.6) ; frame->Draw() ; }