///////////////////////////////////////////////////////////////////////// // // 'MULTIDIMENSIONAL MODELS' RooFit tutorial macro #308 // // Examples on normalization of p.d.f.s, // integration of p.d.fs, construction // of cumulative distribution functions from p.d.f.s // in two dimensions // // 07/2008 - Wouter Verkerke // ///////////////////////////////////////////////////////////////////////// #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooRealVar.h" #include "RooGaussian.h" #include "RooConstVar.h" #include "RooProdPdf.h" #include "RooAbsReal.h" #include "RooPlot.h" #include "TCanvas.h" #include "TAxis.h" #include "TH1.h" using namespace RooFit ; void rf308_normintegration2d() { // S e t u p m o d e l // --------------------- // Create observables x,y RooRealVar x("x","x",-10,10) ; RooRealVar y("y","y",-10,10) ; // Create p.d.f. gaussx(x,-2,3), gaussy(y,2,2) RooGaussian gx("gx","gx",x,RooConst(-2),RooConst(3)) ; RooGaussian gy("gy","gy",y,RooConst(+2),RooConst(2)) ; // Create gxy = gx(x)*gy(y) RooProdPdf gxy("gxy","gxy",RooArgSet(gx,gy)) ; // R e t r i e v e r a w & n o r m a l i z e d v a l u e s o f R o o F i t p . d . f . s // -------------------------------------------------------------------------------------------------- // Return 'raw' unnormalized value of gx cout << "gxy = " << gxy.getVal() << endl ; // Return value of gxy normalized over x _and_ y in range [-10,10] RooArgSet nset_xy(x,y) ; cout << "gx_Norm[x,y] = " << gxy.getVal(&nset_xy) << endl ; // Create object representing integral over gx // which is used to calculate gx_Norm[x,y] == gx / gx_Int[x,y] RooAbsReal* igxy = gxy.createIntegral(RooArgSet(x,y)) ; cout << "gx_Int[x,y] = " << igxy->getVal() << endl ; // NB: it is also possible to do the following // Return value of gxy normalized over x in range [-10,10] (i.e. treating y as parameter) RooArgSet nset_x(x) ; cout << "gx_Norm[x] = " << gxy.getVal(&nset_x) << endl ; // Return value of gxy normalized over y in range [-10,10] (i.e. treating x as parameter) RooArgSet nset_y(y) ; cout << "gx_Norm[y] = " << gxy.getVal(&nset_y) << endl ; // I n t e g r a t e n o r m a l i z e d p d f o v e r s u b r a n g e // ---------------------------------------------------------------------------- // Define a range named "signal" in x from -5,5 x.setRange("signal",-5,5) ; y.setRange("signal",-3,3) ; // Create an integral of gxy_Norm[x,y] over x and y in range "signal" // This is the fraction of of p.d.f. gxy_Norm[x,y] which is in the // range named "signal" RooAbsReal* igxy_sig = gxy.createIntegral(RooArgSet(x,y),NormSet(RooArgSet(x,y)),Range("signal")) ; cout << "gx_Int[x,y|signal]_Norm[x,y] = " << igxy_sig->getVal() << endl ; // C o n s t r u c t c u m u l a t i v e d i s t r i b u t i o n f u n c t i o n f r o m p d f // ----------------------------------------------------------------------------------------------------- // Create the cumulative distribution function of gx // i.e. calculate Int[-10,x] gx(x') dx' RooAbsReal* gxy_cdf = gxy.createCdf(RooArgSet(x,y)) ; // Plot cdf of gx versus x TH1* hh_cdf = gxy_cdf->createHistogram("hh_cdf",x,Binning(40),YVar(y,Binning(40))) ; hh_cdf->SetLineColor(kBlue) ; new TCanvas("rf308_normintegration2d","rf308_normintegration2d",600,600) ; gPad->SetLeftMargin(0.15) ; hh_cdf->GetZaxis()->SetTitleOffset(1.8) ; hh_cdf->Draw("surf") ; }