///////////////////////////////////////////////////////////////////////// // // 'ORGANIZATION AND SIMULTANEOUS FITS' RooFit tutorial macro #510 // // Working with named parameter sets and parameter snapshots in // workspaces // // 04/2009 - Wouter Verkerke // ///////////////////////////////////////////////////////////////////////// #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooRealVar.h" #include "RooDataSet.h" #include "RooGaussian.h" #include "RooConstVar.h" #include "RooChebychev.h" #include "RooAddPdf.h" #include "RooWorkspace.h" #include "RooPlot.h" #include "TCanvas.h" #include "TAxis.h" #include "TFile.h" #include "TH1.h" using namespace RooFit ; void fillWorkspace(RooWorkspace& w) ; void rf510_wsnamedsets() { // C r e a t e m o d e l a n d d a t a s e t // ----------------------------------------------- RooWorkspace* w = new RooWorkspace("w") ; fillWorkspace(*w) ; // Exploit convention encoded in named set "parameters" and "observables" // to use workspace contents w/o need for introspected RooAbsPdf* model = w->pdf("model") ; // Generate data from p.d.f. in given observables RooDataSet* data = model->generate(*w->set("observables"),1000) ; // Fit model to data model->fitTo(*data) ; // Plot fitted model and data on frame of first (only) observable RooPlot* frame = ((RooRealVar*)w->set("observables")->first())->frame() ; data->plotOn(frame) ; model->plotOn(frame) ; // Overlay plot with model with reference parameters as stored in snapshots w->loadSnapshot("reference_fit") ; model->plotOn(frame,LineColor(kRed)) ; w->loadSnapshot("reference_fit_bkgonly") ; model->plotOn(frame,LineColor(kRed),LineStyle(kDashed)) ; // Draw the frame on the canvas new TCanvas("rf510_wsnamedsets","rf503_wsnamedsets",600,600) ; gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.4) ; frame->Draw() ; // Print workspace contents w->Print() ; // Workspace will remain in memory after macro finishes gDirectory->Add(w) ; } void fillWorkspace(RooWorkspace& w) { // C r e a t e m o d e l // ----------------------- // Declare observable x RooRealVar x("x","x",0,10) ; // Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters RooRealVar mean("mean","mean of gaussians",5,0,10) ; RooRealVar sigma1("sigma1","width of gaussians",0.5) ; RooRealVar sigma2("sigma2","width of gaussians",1) ; RooGaussian sig1("sig1","Signal component 1",x,mean,sigma1) ; RooGaussian sig2("sig2","Signal component 2",x,mean,sigma2) ; // Build Chebychev polynomial p.d.f. RooRealVar a0("a0","a0",0.5,0.,1.) ; RooRealVar a1("a1","a1",-0.2,0.,1.) ; RooChebychev bkg("bkg","Background",x,RooArgSet(a0,a1)) ; // Sum the signal components into a composite signal p.d.f. RooRealVar sig1frac("sig1frac","fraction of component 1 in signal",0.8,0.,1.) ; RooAddPdf sig("sig","Signal",RooArgList(sig1,sig2),sig1frac) ; // Sum the composite signal and background RooRealVar bkgfrac("bkgfrac","fraction of background",0.5,0.,1.) ; RooAddPdf model("model","g1+g2+a",RooArgList(bkg,sig),bkgfrac) ; // Import model into p.d.f. w.import(model) ; // E n c o d e d e f i n i t i o n o f p a r a m e t e r s i n w o r k s p a c e // --------------------------------------------------------------------------------------- // Define named sets "parameters" and "observables", which list which variables should be considered // parameters and observables by the users convention // // Variables appearing in sets _must_ live in the workspace already, or the autoImport flag // of defineSet must be set to import them on the fly. Named sets contain only references // to the original variables, therefore the value of observables in named sets already // reflect their 'current' value RooArgSet* params = (RooArgSet*) model.getParameters(x) ; w.defineSet("parameters",*params) ; w.defineSet("observables",x) ; // E n c o d e r e f e r e n c e v a l u e f o r p a r a m e t e r s i n w o r k s p a c e // --------------------------------------------------------------------------------------------------- // Define a parameter 'snapshot' in the p.d.f. // Unlike a named set, a parameter snapshot stores an independent set of values for // a given set of variables in the workspace. The values can be stored and reloaded // into the workspace variable objects using the loadSnapshot() and saveSnapshot() // methods. A snapshot saves the value of each variable, any errors that are stored // with it as well as the 'Constant' flag that is used in fits to determine if a // parameter is kept fixed or not. // Do a dummy fit to a (supposedly) reference dataset here and store the results // of that fit into a snapshot RooDataSet* refData = model.generate(x,10000) ; model.fitTo(*refData,PrintLevel(-1)) ; // The kTRUE flag imports the values of the objects in (*params) into the workspace // If not set, the present values of the workspace parameters objects are stored w.saveSnapshot("reference_fit",*params,kTRUE) ; // Make another fit with the signal componentforced to zero // and save those parameters too bkgfrac.setVal(1) ; bkgfrac.setConstant(kTRUE) ; bkgfrac.removeError() ; model.fitTo(*refData,PrintLevel(-1)) ; w.saveSnapshot("reference_fit_bkgonly",*params,kTRUE) ; }