////////////////////////////////////////////////////////////////////////// // // 'LIKELIHOOD AND MINIMIZATION' RooFit tutorial macro #603 // // Setting up a multi-core parallelized unbinned maximum likelihood fit // // // // 07/2008 - Wouter Verkerke // ///////////////////////////////////////////////////////////////////////// #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooRealVar.h" #include "RooDataSet.h" #include "RooGaussian.h" #include "RooConstVar.h" #include "RooPolynomial.h" #include "RooAddPdf.h" #include "RooProdPdf.h" #include "TCanvas.h" #include "TAxis.h" #include "RooPlot.h" using namespace RooFit ; void rf603_multicpu() { // C r e a t e 3 D p d f a n d d a t a // ------------------------------------------- // Create observables RooRealVar x("x","x",-5,5) ; RooRealVar y("y","y",-5,5) ; RooRealVar z("z","z",-5,5) ; // Create signal pdf gauss(x)*gauss(y)*gauss(z) RooGaussian gx("gx","gx",x,RooConst(0),RooConst(1)) ; RooGaussian gy("gy","gy",y,RooConst(0),RooConst(1)) ; RooGaussian gz("gz","gz",z,RooConst(0),RooConst(1)) ; RooProdPdf sig("sig","sig",RooArgSet(gx,gy,gz)) ; // Create background pdf poly(x)*poly(y)*poly(z) RooPolynomial px("px","px",x,RooArgSet(RooConst(-0.1),RooConst(0.004))) ; RooPolynomial py("py","py",y,RooArgSet(RooConst(0.1),RooConst(-0.004))) ; RooPolynomial pz("pz","pz",z) ; RooProdPdf bkg("bkg","bkg",RooArgSet(px,py,pz)) ; // Create composite pdf sig+bkg RooRealVar fsig("fsig","signal fraction",0.1,0.,1.) ; RooAddPdf model("model","model",RooArgList(sig,bkg),fsig) ; // Generate large dataset RooDataSet* data = model.generate(RooArgSet(x,y,z),200000) ; // P a r a l l e l f i t t i n g // ------------------------------- // In parallel mode the likelihood calculation is split in N pieces, // that are calculated in parallel and added a posteriori before passing // it back to MINUIT. // Use four processes and time results both in wall time and CPU time model.fitTo(*data,NumCPU(4),Timer(kTRUE)) ; // P a r a l l e l M C p r o j e c t i o n s // ---------------------------------------------- // Construct signal, total likelihood projection on (y,z) observables and likelihood ratio RooAbsPdf* sigyz = sig.createProjection(x) ; RooAbsPdf* totyz = model.createProjection(x) ; RooFormulaVar llratio_func("llratio","log10(@0)-log10(@1)",RooArgList(*sigyz,*totyz)) ; // Calculate likelihood ratio for each event, define subset of events with high signal likelihood data->addColumn(llratio_func) ; RooDataSet* dataSel = (RooDataSet*) data->reduce(Cut("llratio>0.7")) ; // Make plot frame and plot data RooPlot* frame = x.frame(Title("Projection on X with LLratio(y,z)>0.7"),Bins(40)) ; dataSel->plotOn(frame) ; // Perform parallel projection using MC integration of pdf using given input dataSet. // In this mode the data-weighted average of the pdf is calculated by splitting the // input dataset in N equal pieces and calculating in parallel the weighted average // one each subset. The N results of those calculations are then weighted into the // final result // Use four processes model.plotOn(frame,ProjWData(*dataSel),NumCPU(4)) ; new TCanvas("rf603_multicpu","rf603_multicpu",600,600) ; gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.6) ; frame->Draw() ; }