////////////////////////////////////////////////////////////////////////// // // 'LIKELIHOOD AND MINIMIZATION' RooFit tutorial macro #608 // // Representing the parabolic approximation of the fit as // a multi-variate Gaussian on the parameters of the fitted p.d.f. // // // 07/2008 - Wouter Verkerke // ///////////////////////////////////////////////////////////////////////// #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooRealVar.h" #include "RooDataSet.h" #include "RooGaussian.h" #include "RooConstVar.h" #include "RooAddPdf.h" #include "RooChebychev.h" #include "RooFitResult.h" #include "TCanvas.h" #include "TAxis.h" #include "RooPlot.h" #include "TFile.h" #include "TStyle.h" #include "TH2.h" #include "TH3.h" using namespace RooFit ; void rf608_fitresultaspdf() { // C r e a t e m o d e l a n d d a t a s e t // ----------------------------------------------- // Observable RooRealVar x("x","x",-20,20) ; // Model (intentional strong correlations) RooRealVar mean("mean","mean of g1 and g2",0,-1,1) ; RooRealVar sigma_g1("sigma_g1","width of g1",2) ; RooGaussian g1("g1","g1",x,mean,sigma_g1) ; RooRealVar sigma_g2("sigma_g2","width of g2",4,3.0,5.0) ; RooGaussian g2("g2","g2",x,mean,sigma_g2) ; RooRealVar frac("frac","frac",0.5,0.0,1.0) ; RooAddPdf model("model","model",RooArgList(g1,g2),frac) ; // Generate 1000 events RooDataSet* data = model.generate(x,1000) ; // F i t m o d e l t o d a t a // ---------------------------------- RooFitResult* r = model.fitTo(*data,Save()) ; // C r e a t e M V G a u s s i a n p d f o f f i t t e d p a r a m e t e r s // ------------------------------------------------------------------------------------ RooAbsPdf* parabPdf = r->createHessePdf(RooArgSet(frac,mean,sigma_g2)) ; // S o m e e x e c e r c i s e s w i t h t h e p a r a m e t e r p d f // ----------------------------------------------------------------------------- // Generate 100K points in the parameter space, sampled from the MVGaussian p.d.f. RooDataSet* d = parabPdf->generate(RooArgSet(mean,sigma_g2,frac),100000) ; // Sample a 3-D histogram of the p.d.f. to be visualized as an error ellipsoid using the GLISO draw option TH3* hh_3d = (TH3*) parabPdf->createHistogram("mean,sigma_g2,frac",25,25,25) ; hh_3d->SetFillColor(kBlue) ; // Project 3D parameter p.d.f. down to 3 permutations of two-dimensional p.d.f.s // The integrations corresponding to these projections are performed analytically // by the MV Gaussian p.d.f. RooAbsPdf* pdf_sigmag2_frac = parabPdf->createProjection(mean) ; RooAbsPdf* pdf_mean_frac = parabPdf->createProjection(sigma_g2) ; RooAbsPdf* pdf_mean_sigmag2 = parabPdf->createProjection(frac) ; // Make 2D plots of the 3 two-dimensional p.d.f. projections TH2* hh_sigmag2_frac = (TH2*) pdf_sigmag2_frac->createHistogram("sigma_g2,frac",50,50) ; TH2* hh_mean_frac = (TH2*) pdf_mean_frac->createHistogram("mean,frac",50,50) ; TH2* hh_mean_sigmag2 = (TH2*) pdf_mean_sigmag2->createHistogram("mean,sigma_g2",50,50) ; hh_mean_frac->SetLineColor(kBlue) ; hh_sigmag2_frac->SetLineColor(kBlue) ; hh_mean_sigmag2->SetLineColor(kBlue) ; // Draw the 'sigar' gStyle->SetCanvasPreferGL(true); gStyle->SetPalette(1) ; new TCanvas("rf608_fitresultaspdf_1","rf608_fitresultaspdf_1",600,600) ; hh_3d->Draw("gliso") ; // Draw the 2D projections of the 3D p.d.f. TCanvas* c2 = new TCanvas("rf608_fitresultaspdf_2","rf608_fitresultaspdf_2",900,600) ; c2->Divide(3,2) ; c2->cd(1) ; gPad->SetLeftMargin(0.15) ; hh_mean_sigmag2->GetZaxis()->SetTitleOffset(1.4) ; hh_mean_sigmag2->Draw("surf3") ; c2->cd(2) ; gPad->SetLeftMargin(0.15) ; hh_sigmag2_frac->GetZaxis()->SetTitleOffset(1.4) ; hh_sigmag2_frac->Draw("surf3") ; c2->cd(3) ; gPad->SetLeftMargin(0.15) ; hh_mean_frac->GetZaxis()->SetTitleOffset(1.4) ; hh_mean_frac->Draw("surf3") ; // Draw the distributions of parameter points sampled from the p.d.f. TH1* tmp1 = d->createHistogram("mean,sigma_g2",50,50) ; TH1* tmp2 = d->createHistogram("sigma_g2,frac",50,50) ; TH1* tmp3 = d->createHistogram("mean,frac",50,50) ; c2->cd(4) ; gPad->SetLeftMargin(0.15) ; tmp1->GetZaxis()->SetTitleOffset(1.4) ; tmp1->Draw("lego3") ; c2->cd(5) ; gPad->SetLeftMargin(0.15) ; tmp2->GetZaxis()->SetTitleOffset(1.4) ; tmp2->Draw("lego3") ; c2->cd(6) ; gPad->SetLeftMargin(0.15) ; tmp3->GetZaxis()->SetTitleOffset(1.4) ; tmp3->Draw("lego3") ; }