///////////////////////////////////////////////////////////////////////// // // 'LIKELIHOOD AND MINIMIZATION' RooFit tutorial macro #610 // // Visualization of errors from a covariance matrix // // // // 04/2009 - Wouter Verkerke // ///////////////////////////////////////////////////////////////////////// #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooRealVar.h" #include "RooDataHist.h" #include "RooGaussian.h" #include "RooConstVar.h" #include "RooAddPdf.h" #include "RooPlot.h" #include "TCanvas.h" #include "TAxis.h" #include "TAxis.h" using namespace RooFit ; void rf610_visualerror() { // S e t u p e x a m p l e f i t // --------------------------------------- // Create sum of two Gaussians p.d.f. with factory RooRealVar x("x","x",-10,10) ; RooRealVar m("m","m",0,-10,10) ; RooRealVar s("s","s",2,1,50) ; RooGaussian sig("sig","sig",x,m,s) ; RooRealVar m2("m2","m2",-1,-10,10) ; RooRealVar s2("s2","s2",6,1,50) ; RooGaussian bkg("bkg","bkg",x,m2,s2) ; RooRealVar fsig("fsig","fsig",0.33,0,1) ; RooAddPdf model("model","model",RooArgList(sig,bkg),fsig) ; // Create binned dataset x.setBins(25) ; RooAbsData* d = model.generateBinned(x,1000) ; // Perform fit and save fit result RooFitResult* r = model.fitTo(*d,Save()) ; // V i s u a l i z e f i t e r r o r // ------------------------------------- // Make plot frame RooPlot* frame = x.frame(Bins(40),Title("P.d.f with visualized 1-sigma error band")) ; d->plotOn(frame) ; // Visualize 1-sigma error encoded in fit result 'r' as orange band using linear error propagation // This results in an error band that is by construction symmetric // // The linear error is calculated as // error(x) = Z* F_a(x) * Corr(a,a') F_a'(x) // // where F_a(x) = [ f(x,a+da) - f(x,a-da) ] / 2, // // with f(x) = the plotted curve // 'da' = error taken from the fit result // Corr(a,a') = the correlation matrix from the fit result // Z = requested significance 'Z sigma band' // // The linear method is fast (required 2*N evaluations of the curve, where N is the number of parameters), // but may not be accurate in the presence of strong correlations (~>0.9) and at Z>2 due to linear and // Gaussian approximations made // model.plotOn(frame,VisualizeError(*r,1),FillColor(kOrange)) ; // Calculate error using sampling method and visualize as dashed red line. // // In this method a number of curves is calculated with variations of the parameter values, as sampled // from a multi-variate Gaussian p.d.f. that is constructed from the fit results covariance matrix. // The error(x) is determined by calculating a central interval that capture N% of the variations // for each valye of x, where N% is controlled by Z (i.e. Z=1 gives N=68%). The number of sampling curves // is chosen to be such that at least 100 curves are expected to be outside the N% interval, and is minimally // 100 (e.g. Z=1->Ncurve=356, Z=2->Ncurve=2156)) Intervals from the sampling method can be asymmetric, // and may perform better in the presence of strong correlations, but may take (much) longer to calculate model.plotOn(frame,VisualizeError(*r,1,kFALSE),DrawOption("L"),LineWidth(2),LineColor(kRed)) ; // Perform the same type of error visualization on the background component only. // The VisualizeError() option can generally applied to _any_ kind of plot (components, asymmetries, efficiencies etc..) model.plotOn(frame,VisualizeError(*r,1),FillColor(kOrange),Components("bkg")) ; model.plotOn(frame,VisualizeError(*r,1,kFALSE),DrawOption("L"),LineWidth(2),LineColor(kRed),Components("bkg"),LineStyle(kDashed)) ; // Overlay central value model.plotOn(frame) ; model.plotOn(frame,Components("bkg"),LineStyle(kDashed)) ; d->plotOn(frame) ; frame->SetMinimum(0) ; // V i s u a l i z e p a r t i a l f i t e r r o r // ------------------------------------------------------ // Make plot frame RooPlot* frame2 = x.frame(Bins(40),Title("Visualization of 2-sigma partial error from (m,m2)")) ; // Visualize partial error. For partial error visualization the covariance matrix is first reduced as follows // ___ -1 // Vred = V22 = V11 - V12 * V22 * V21 // // Where V11,V12,V21,V22 represent a block decomposition of the covariance matrix into observables that // are propagated (labeled by index '1') and that are not propagated (labeled by index '2'), and V22bar // is the Shur complement of V22, calculated as shown above // // (Note that Vred is _not_ a simple sub-matrix of V) // Propagate partial error due to shape parameters (m,m2) using linear and sampling method model.plotOn(frame2,VisualizeError(*r,RooArgSet(m,m2),2),FillColor(kCyan)) ; model.plotOn(frame2,Components("bkg"),VisualizeError(*r,RooArgSet(m,m2),2),FillColor(kCyan)) ; model.plotOn(frame2) ; model.plotOn(frame2,Components("bkg"),LineStyle(kDashed)) ; frame2->SetMinimum(0) ; // Make plot frame RooPlot* frame3 = x.frame(Bins(40),Title("Visualization of 2-sigma partial error from (s,s2)")) ; // Propagate partial error due to yield parameter using linear and sampling method model.plotOn(frame3,VisualizeError(*r,RooArgSet(s,s2),2),FillColor(kGreen)) ; model.plotOn(frame3,Components("bkg"),VisualizeError(*r,RooArgSet(s,s2),2),FillColor(kGreen)) ; model.plotOn(frame3) ; model.plotOn(frame3,Components("bkg"),LineStyle(kDashed)) ; frame3->SetMinimum(0) ; // Make plot frame RooPlot* frame4 = x.frame(Bins(40),Title("Visualization of 2-sigma partial error from fsig")) ; // Propagate partial error due to yield parameter using linear and sampling method model.plotOn(frame4,VisualizeError(*r,RooArgSet(fsig),2),FillColor(kMagenta)) ; model.plotOn(frame4,Components("bkg"),VisualizeError(*r,RooArgSet(fsig),2),FillColor(kMagenta)) ; model.plotOn(frame4) ; model.plotOn(frame4,Components("bkg"),LineStyle(kDashed)) ; frame4->SetMinimum(0) ; TCanvas* c = new TCanvas("rf610_visualerror","rf610_visualerror",800,800) ; c->Divide(2,2) ; c->cd(1) ; gPad->SetLeftMargin(0.15) ; frame->GetYaxis()->SetTitleOffset(1.4) ; frame->Draw() ; c->cd(2) ; gPad->SetLeftMargin(0.15) ; frame2->GetYaxis()->SetTitleOffset(1.6) ; frame2->Draw() ; c->cd(3) ; gPad->SetLeftMargin(0.15) ; frame3->GetYaxis()->SetTitleOffset(1.6) ; frame3->Draw() ; c->cd(4) ; gPad->SetLeftMargin(0.15) ; frame4->GetYaxis()->SetTitleOffset(1.6) ; frame4->Draw() ; }