///////////////////////////////////////////////////////////////////////// // // 'VALIDATION AND MC STUDIES' RooFit tutorial macro #803 // // RooMCStudy: Using the randomizer and profile likelihood add-on models // // // 07/2008 - Wouter Verkerke // ///////////////////////////////////////////////////////////////////////// #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooRealVar.h" #include "RooDataSet.h" #include "RooGaussian.h" #include "RooConstVar.h" #include "RooChebychev.h" #include "RooAddPdf.h" #include "RooMCStudy.h" #include "RooRandomizeParamMCSModule.h" #include "RooDLLSignificanceMCSModule.h" #include "RooPlot.h" #include "TCanvas.h" #include "TAxis.h" #include "TH1.h" #include "TDirectory.h" using namespace RooFit ; void rf803_mcstudy_addons2() { // C r e a t e m o d e l // ----------------------- // Simulation of signal and background of top quark decaying into // 3 jets with background // Observable RooRealVar mjjj("mjjj","m(3jet) (GeV)",100,85.,350.) ; // Signal component (Gaussian) RooRealVar mtop("mtop","m(top)",162) ; RooRealVar wtop("wtop","m(top) resolution",15.2) ; RooGaussian sig("sig","top signal",mjjj,mtop,wtop) ; // Background component (Chebychev) RooRealVar c0("c0","Chebychev coefficient 0",-0.846,-1.,1.) ; RooRealVar c1("c1","Chebychev coefficient 1", 0.112,-1.,1.) ; RooRealVar c2("c2","Chebychev coefficient 2", 0.076,-1.,1.) ; RooChebychev bkg("bkg","combinatorial background",mjjj,RooArgList(c0,c1,c2)) ; // Composite model RooRealVar nsig("nsig","number of signal events",53,0,1e3) ; RooRealVar nbkg("nbkg","number of background events",103,0,5e3) ; RooAddPdf model("model","model",RooArgList(sig,bkg),RooArgList(nsig,nbkg)) ; // C r e a t e m a n a g e r // --------------------------- // Configure manager to perform binned extended likelihood fits (Binned(),Extended()) on data generated // with a Poisson fluctuation on Nobs (Extended()) RooMCStudy* mcs = new RooMCStudy(model,mjjj,Binned(),Silence(),Extended(kTRUE), FitOptions(Extended(kTRUE),PrintEvalErrors(-1))) ; // C u s t o m i z e m a n a g e r // --------------------------------- // Add module that randomizes the summed value of nsig+nbkg // sampling from a uniform distribution between 0 and 1000 // // In general one can randomize a single parameter, or a // sum of N parameters, using either a uniform or a Gaussian // distribution. Multiple randomization can be executed // by a single randomizer module RooRandomizeParamMCSModule randModule ; randModule.sampleSumUniform(RooArgSet(nsig,nbkg),50,500) ; mcs->addModule(randModule) ; // Add profile likelihood calculation of significance. Redo each // fit while keeping parameter nsig fixed to zero. For each toy, // the difference in -log(L) of both fits is stored, as well // a simple significance interpretation of the delta(-logL) // using Dnll = 0.5 sigma^2 RooDLLSignificanceMCSModule sigModule(nsig,0) ; mcs->addModule(sigModule) ; // R u n m a n a g e r , m a k e p l o t s // --------------------------------------------- // Run 1000 experiments. This configuration will generate a fair number // of (harmless) MINUIT warnings due to the instability of the Chebychev polynomial fit // at low statistics. mcs->generateAndFit(500) ; // Make some plots TH1* dll_vs_ngen = mcs->fitParDataSet().createHistogram("ngen,dll_nullhypo_nsig",-40,-40) ; TH1* z_vs_ngen = mcs->fitParDataSet().createHistogram("ngen,significance_nullhypo_nsig",-40,-40) ; TH1* errnsig_vs_ngen = mcs->fitParDataSet().createHistogram("ngen,nsigerr",-40,-40) ; TH1* errnsig_vs_nsig = mcs->fitParDataSet().createHistogram("nsig,nsigerr",-40,-40) ; // Draw plots on canvas TCanvas* c = new TCanvas("rf803_mcstudy_addons2","rf802_mcstudy_addons2",800,800) ; c->Divide(2,2) ; c->cd(1) ; gPad->SetLeftMargin(0.15) ; dll_vs_ngen->GetYaxis()->SetTitleOffset(1.6) ; dll_vs_ngen->Draw("box") ; c->cd(2) ; gPad->SetLeftMargin(0.15) ; z_vs_ngen->GetYaxis()->SetTitleOffset(1.6) ; z_vs_ngen->Draw("box") ; c->cd(3) ; gPad->SetLeftMargin(0.15) ; errnsig_vs_ngen->GetYaxis()->SetTitleOffset(1.6) ; errnsig_vs_ngen->Draw("box") ; c->cd(4) ; gPad->SetLeftMargin(0.15) ; errnsig_vs_nsig->GetYaxis()->SetTitleOffset(1.6) ; errnsig_vs_nsig->Draw("box") ; // Make RooMCStudy object available on command line after // macro finishes gDirectory->Add(mcs) ; }