/* OneSidedFrequentistUpperLimitWithBands Author: Kyle Cranmer, Contributions from Haichen Wang and Daniel Whiteson date: Dec. 2010 - Feb. 2011 v1. Jan 28 This is a standard demo that can be used with any ROOT file prepared in the standard way. You specify: - name for input ROOT file - name of workspace inside ROOT file that holds model and data - name of ModelConfig that specifies details for calculator tools - name of dataset With default parameters the macro will attempt to run the standard hist2workspace example and read the ROOT file that it produces. The first ~100 lines define a new test statistic, then the main macro starts. You may want to control: double confidenceLevel=0.95; int nPointsToScan = 30; int nToyMC = 200; This uses a modified version of the profile likelihood ratio as a test statistic for upper limits (eg. test stat = 0 if muhat>mu). Based on the observed data, one defines a set of parameter points to be tested based on the value of the parameter of interest and the conditional MLE (eg. profiled) values of the nuisance parameters. At each parameter point, pseudo-experiments are generated using this fixed reference model and then the test statistic is evaluated. Note, the nuisance parameters are floating in the fits. For each point, the threshold that defines the 95% acceptance region is found. This forms a "Confidence Belt". After constructing the confidence belt, one can find the confidence interval for any particular dataset by finding the intersection of the observed test statistic and the confidence belt. First this is done on the observed data to get an observed 1-sided upper limt. Finally, there expected limit and bands (from background-only) are formed by generating background-only data and finding the upper limit. This is done by hand for now, will later be part of the RooStats tools. On a technical note, this technique is NOT the Feldman-Cousins technique, because that is a 2-sided interval BY DEFINITION. However, like the Feldman-Cousins technique this is a Neyman-Construction. For technical reasons the easiest way to implement this right now is to use the FeldmanCousins tool and then change the test statistic that it is using. Building the confidence belt can be computationally expensive. Once it is built, one could save it to a file and use it in a separate step. We can use PROOF to speed things along in parallel, however, the test statistic has to be installed on the workers so either turn off PROOF or include the modified test statistic in your $ROOTSYS/roofit/roostats/inc directory, add the additional line to the LinkDef.h file, and recompile root. Note, if you have a boundary on the parameter of interest (eg. cross-section) the threshold on the one-sided test statistic starts off very small because we are only including downward fluctuations. You can see the threshold in these printouts: [#0] PROGRESS:Generation -- generated toys: 500 / 999 NeymanConstruction: Prog: 12/50 total MC = 39 this test stat = 0 SigXsecOverSM=0.69 alpha_syst1=0.136515 alpha_syst3=0.425415 beta_syst2=1.08496 [-1e+30, 0.011215] in interval = 1 this tells you the values of the parameters being used to generate the pseudo-experiments and the threshold in this case is 0.011215. One would expect for 95% that the threshold would be ~1.35 once the cross-section is far enough away from 0 that it is essentially unaffected by the boundary. As one reaches the last points in the scan, the theshold starts to get artificially high. This is because the range of the parameter in the fit is the same as the range in the scan. In the future, these should be independently controled, but they are not now. As a result the ~50% of pseudo-experiments that have an upward fluctuation end up with muhat = muMax. Because of this, the upper range of the parameter should be well above the expected upper limit... but not too high or one will need a very large value of nPointsToScan to resolve the relevant region. This can be improved, but this is the first version of this script. Important note: when the model includes external constraint terms, like a Gaussian constraint to a nuisance parameter centered around some nominal value there is a subtlety. The asymptotic results are all based on the assumption that all the measurements fluctuate... including the nominal values from auxiliary measurements. If these do not fluctuate, this corresponds to an "conditional ensemble". The result is that the distribution of the test statistic can become very non-chi^2. This results in thresholds that become very large. This can be seen in the following thought experiment. Say the model is Pois(N | s + b) * G(b0|b,sigma) where G(b0|b,sigma) is the external constraint and b0 is 100. If N is also 100 then the profiled value of b given s is going to be some trade off betwen 100-s and b0. If sigma is \sqrt(N), then the profiled value of b is probably 100 - s/2 So for s=60 we are going to have a profiled value of b~70. Now when we generate pseudo-experiments for s=60, b=70 we will have N~130 and the average shat will be 30, not 60. In practice, this is only an issue for values of s that are very excluded. For values of s near the 95% limit this should not be a big effect. This can be avoided if the nominal values of the constraints also fluctuate, but that requires that those parameters are RooRealVars in the model. This version does not deal with this issue, but it will be addressed in a future version. */ #include "TFile.h" #include "TROOT.h" #include "TH1F.h" #include "TCanvas.h" #include "TSystem.h" #include "RooWorkspace.h" #include "RooSimultaneous.h" #include "RooAbsData.h" #include "RooStats/ModelConfig.h" #include "RooStats/FeldmanCousins.h" #include "RooStats/ToyMCSampler.h" #include "RooStats/PointSetInterval.h" #include "RooStats/ConfidenceBelt.h" #include "RooStats/RooStatsUtils.h" #include "RooStats/ProfileLikelihoodTestStat.h" using namespace RooFit; using namespace RooStats; ///////////////////////////////////////////////////////////////////////// // The actual macro void OneSidedFrequentistUpperLimitWithBands(const char* infile = "", const char* workspaceName = "combined", const char* modelConfigName = "ModelConfig", const char* dataName = "obsData"){ #ifdef __CINT__ cout << "DO NOT RUN WITH CINT: we are using a custom test statistic "; cout << "which requires that this tutorial must be compiled "; cout << "with ACLIC" << endl; return; #endif double confidenceLevel=0.95; int nPointsToScan = 30; int nToyMC = 500; ///////////////////////////////////////////////////////////// // First part is just to access a user-defined file // or create the standard example file if it doesn't exist //////////////////////////////////////////////////////////// const char* filename = ""; if (!strcmp(infile,"")) filename = "results/example_combined_GaussExample_model.root"; else filename = infile; // Check if example input file exists TFile *file = TFile::Open(filename); // if input file was specified byt not found, quit if(!file && strcmp(infile,"")){ cout <<"file not found" << endl; return; } // if default file not found, try to create it if(!file ){ // Normally this would be run on the command line cout <<"will run standard hist2workspace example"<ProcessLine(".! prepareHistFactory ."); gROOT->ProcessLine(".! hist2workspace config/example.xml"); cout <<"\n\n---------------------"<Get(workspaceName); if(!w){ cout <<"workspace not found" << endl; return; } // get the modelConfig out of the file ModelConfig* mc = (ModelConfig*) w->obj(modelConfigName); // get the modelConfig out of the file RooAbsData* data = w->data(dataName); // make sure ingredients are found if(!data || !mc){ w->Print(); cout << "data or ModelConfig was not found" <GetParametersOfInterest()->first(); // firstPOI->setMin(0); // firstPOI->setMax(10); ///////////////////////////////////////////// // create and use the FeldmanCousins tool // to find and plot the 95% confidence interval // on the parameter of interest as specified // in the model config // REMEMBER, we will change the test statistic // so this is NOT a Feldman-Cousins interval FeldmanCousins fc(*data,*mc); fc.SetConfidenceLevel(confidenceLevel); // fc.AdditionalNToysFactor(0.25); // degrade/improve sampling that defines confidence belt // fc.UseAdaptiveSampling(true); // speed it up a bit, don't use for expectd limits fc.SetNBins(nPointsToScan); // set how many points per parameter of interest to scan fc.CreateConfBelt(true); // save the information in the belt for plotting ///////////////////////////////////////////// // Feldman-Cousins is a unified limit by definition // but the tool takes care of a few things for us like which values // of the nuisance parameters should be used to generate toys. // so let's just change the test statistic and realize this is // no longer "Feldman-Cousins" but is a fully frequentist Neyman-Construction. // ProfileLikelihoodTestStatModified onesided(*mc->GetPdf()); // fc.GetTestStatSampler()->SetTestStatistic(&onesided); // ((ToyMCSampler*) fc.GetTestStatSampler())->SetGenerateBinned(true); ToyMCSampler* toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler(); ProfileLikelihoodTestStat* testStat = dynamic_cast(toymcsampler->GetTestStatistic()); testStat->SetOneSided(true); // Since this tool needs to throw toy MC the PDF needs to be // extended or the tool needs to know how many entries in a dataset // per pseudo experiment. // In the 'number counting form' where the entries in the dataset // are counts, and not values of discriminating variables, the // datasets typically only have one entry and the PDF is not // extended. if(!mc->GetPdf()->canBeExtended()){ if(data->numEntries()==1) fc.FluctuateNumDataEntries(false); else cout <<"Not sure what to do about this model" <GetGlobalObservables()){ cout << "will use global observables for unconditional ensemble"<GetGlobalObservables()->Print(); toymcsampler->SetGlobalObservables(*mc->GetGlobalObservables()); } toymcsampler->SetProofConfig(&pc); // enable proof // Now get the interval PointSetInterval* interval = fc.GetInterval(); ConfidenceBelt* belt = fc.GetConfidenceBelt(); // print out the iterval on the first Parameter of Interest cout << "\n95% interval on " <GetName()<<" is : ["<< interval->LowerLimit(*firstPOI) << ", "<< interval->UpperLimit(*firstPOI) <<"] "<UpperLimit(*firstPOI); firstPOI->setVal(observedUL); double obsTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*data,tmpPOI); // Ask the calculator which points were scanned RooDataSet* parameterScan = (RooDataSet*) fc.GetPointsToScan(); RooArgSet* tmpPoint; // make a histogram of parameter vs. threshold TH1F* histOfThresholds = new TH1F("histOfThresholds","", parameterScan->numEntries(), firstPOI->getMin(), firstPOI->getMax()); histOfThresholds->GetXaxis()->SetTitle(firstPOI->GetName()); histOfThresholds->GetYaxis()->SetTitle("Threshold"); // loop through the points that were tested and ask confidence belt // what the upper/lower thresholds were. // For FeldmanCousins, the lower cut off is always 0 for(Int_t i=0; inumEntries(); ++i){ tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp"); cout <<"get threshold"<GetAcceptanceRegionMax(*tmpPoint); double poiVal = tmpPoint->getRealValue(firstPOI->GetName()) ; histOfThresholds->Fill(poiVal,arMax); } TCanvas* c1 = new TCanvas(); c1->Divide(2); c1->cd(1); histOfThresholds->SetMinimum(0); histOfThresholds->Draw(); c1->cd(2); ///////////////////////////////////////////////////////////// // Now we generate the expected bands and power-constriant //////////////////////////////////////////////////////////// // First: find parameter point for mu=0, with conditional MLEs for nuisance parameters RooAbsReal* nll = mc->GetPdf()->createNLL(*data); RooAbsReal* profile = nll->createProfile(*mc->GetParametersOfInterest()); firstPOI->setVal(0.); profile->getVal(); // this will do fit and set nuisance parameters to profiled values RooArgSet* poiAndNuisance = new RooArgSet(); if(mc->GetNuisanceParameters()) poiAndNuisance->add(*mc->GetNuisanceParameters()); poiAndNuisance->add(*mc->GetParametersOfInterest()); w->saveSnapshot("paramsToGenerateData",*poiAndNuisance); RooArgSet* paramsToGenerateData = (RooArgSet*) poiAndNuisance->snapshot(); cout << "\nWill use these parameter points to generate pseudo data for bkg only" << endl; paramsToGenerateData->Print("v"); RooArgSet unconditionalObs; unconditionalObs.add(*mc->GetObservables()); unconditionalObs.add(*mc->GetGlobalObservables()); // comment this out for the original conditional ensemble double CLb=0; double CLbinclusive=0; // Now we generate background only and find distribution of upper limits TH1F* histOfUL = new TH1F("histOfUL","",100,0,firstPOI->getMax()); histOfUL->GetXaxis()->SetTitle("Upper Limit (background only)"); histOfUL->GetYaxis()->SetTitle("Entries"); for(int imc=0; imcloadSnapshot("paramsToGenerateData"); // poiAndNuisance->Print("v"); RooDataSet* toyData = 0; // now generate a toy dataset if(!mc->GetPdf()->canBeExtended()){ if(data->numEntries()==1) toyData = mc->GetPdf()->generate(*mc->GetObservables(),1); else cout <<"Not sure what to do about this model" <GetPdf()->generate(*mc->GetObservables(),Extended()); } // generate global observables // need to be careful for simpdf // RooDataSet* globalData = mc->GetPdf()->generate(*mc->GetGlobalObservables(),1); RooSimultaneous* simPdf = dynamic_cast(mc->GetPdf()); if(!simPdf){ RooDataSet *one = mc->GetPdf()->generate(*mc->GetGlobalObservables(), 1); const RooArgSet *values = one->get(); RooArgSet *allVars = mc->GetPdf()->getVariables(); *allVars = *values; delete allVars; delete values; delete one; } else { //try fix for sim pdf TIterator* iter = simPdf->indexCat().typeIterator() ; RooCatType* tt = NULL; while((tt=(RooCatType*) iter->Next())) { // Get pdf associated with state from simpdf RooAbsPdf* pdftmp = simPdf->getPdf(tt->GetName()) ; // Generate only global variables defined by the pdf associated with this state RooArgSet* globtmp = pdftmp->getObservables(*mc->GetGlobalObservables()) ; RooDataSet* tmp = pdftmp->generate(*globtmp,1) ; // Transfer values to output placeholder *globtmp = *tmp->get(0) ; // Cleanup delete globtmp ; delete tmp ; } } // globalData->Print("v"); // unconditionalObs = *globalData->get(); // mc->GetGlobalObservables()->Print("v"); // delete globalData; // cout << "toy data = " << endl; // toyData->get()->Print("v"); // get test stat at observed UL in observed data firstPOI->setVal(observedUL); double toyTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI); // toyData->get()->Print("v"); // cout <<"obsTSatObsUL " <numEntries(); ++i){ tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp"); double arMax = belt->GetAcceptanceRegionMax(*tmpPoint); firstPOI->setVal( tmpPoint->getRealValue(firstPOI->GetName()) ); // double thisTS = profile->getVal(); double thisTS = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI); // cout << "poi = " << firstPOI->getVal() // << " max is " << arMax << " this profile = " << thisTS << endl; // cout << "thisTS = " << thisTS<getVal(); } else{ break; } } /* // loop over points in belt to find upper limit for this toy data double thisUL = 0; for(Int_t i=0; iGetNbinsX(); ++i){ tmpPoint = (RooArgSet*) parameterScan->get(i)->clone("temp"); cout <<"---------------- "<Print("v"); cout << "from hist " << histOfThresholds->GetBinCenter(i+1) <GetBinContent(i+1); // cout << " threhold from Hist = aMax " << arMax<GetAcceptanceRegionMax(*tmpPoint); // cout << "from scan arMax2 = "<< arMax2 << endl; // not the same due to TH1F not TH1D // cout << "scan - hist" << arMax2-arMax << endl; firstPOI->setVal( histOfThresholds->GetBinCenter(i+1)); // double thisTS = profile->getVal(); double thisTS = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData,tmpPOI); // cout << "poi = " << firstPOI->getVal() // << " max is " << arMax << " this profile = " << thisTS << endl; // cout << "thisTS = " << thisTS<getVal(); } else{ break; } } */ histOfUL->Fill(thisUL); // for few events, data is often the same, and UL is often the same // cout << "thisUL = " << thisUL<Draw(); c1->SaveAs("one-sided_upper_limit_output.pdf"); // if you want to see a plot of the sampling distribution for a particular scan point: /* SamplingDistPlot sampPlot; int indexInScan = 0; tmpPoint = (RooArgSet*) parameterScan->get(indexInScan)->clone("temp"); firstPOI->setVal( tmpPoint->getRealValue(firstPOI->GetName()) ); toymcsampler->SetParametersForTestStat(tmpPOI); SamplingDistribution* samp = toymcsampler->GetSamplingDistribution(*tmpPoint); sampPlot.AddSamplingDistribution(samp); sampPlot.Draw(); */ // Now find bands and power constraint Double_t* bins = histOfUL->GetIntegral(); TH1F* cumulative = (TH1F*) histOfUL->Clone("cumulative"); cumulative->SetContent(bins); double band2sigDown, band1sigDown, bandMedian, band1sigUp,band2sigUp; for(int i=1; i<=cumulative->GetNbinsX(); ++i){ if(bins[i]GetBinCenter(i); if(bins[i]GetBinCenter(i); if(bins[i]<0.5) bandMedian=cumulative->GetBinCenter(i); if(bins[i]GetBinCenter(i); if(bins[i]GetBinCenter(i); } cout << "-2 sigma band " << band2sigDown << endl; cout << "-1 sigma band " << band1sigDown << " [Power Constriant)]" << endl; cout << "median of band " << bandMedian << endl; cout << "+1 sigma band " << band1sigUp << endl; cout << "+2 sigma band " << band2sigUp << endl; // print out the iterval on the first Parameter of Interest cout << "\nobserved 95% upper-limit "<< interval->UpperLimit(*firstPOI) <obs|0)] for observed 95% upper-limit "<< CLb <=obs|0)] for observed 95% upper-limit "<< CLbinclusive <