///////////////////////////////////////////////////////////////////////// // // 'Limit Example' RooStats tutorial macro #101 // author: Kyle Cranmer // date June. 2009 // // This tutorial shows an example of creating a simple // model for a number counting experiment with uncertainty // on both the background rate and signal efficeincy. We then // use a Confidence Interval Calculator to set a limit on the signal. // // ///////////////////////////////////////////////////////////////////////// #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooProfileLL.h" #include "RooAbsPdf.h" #include "RooStats/HypoTestResult.h" #include "RooRealVar.h" #include "RooPlot.h" #include "RooDataSet.h" #include "RooTreeDataStore.h" #include "TTree.h" #include "TCanvas.h" #include "TLine.h" #include "TStopwatch.h" #include "RooStats/ProfileLikelihoodCalculator.h" #include "RooStats/MCMCCalculator.h" #include "RooStats/UniformProposal.h" #include "RooStats/FeldmanCousins.h" #include "RooStats/NumberCountingPdfFactory.h" #include "RooStats/ConfInterval.h" #include "RooStats/PointSetInterval.h" #include "RooStats/LikelihoodInterval.h" #include "RooStats/LikelihoodIntervalPlot.h" #include "RooStats/RooStatsUtils.h" #include "RooStats/ModelConfig.h" #include "RooStats/MCMCInterval.h" #include "RooStats/MCMCIntervalPlot.h" #include "RooStats/ProposalFunction.h" #include "RooStats/ProposalHelper.h" #include "RooFitResult.h" #include "TGraph2D.h" // use this order for safety on library loading using namespace RooFit ; using namespace RooStats ; void rs101_limitexample() { ///////////////////////////////////////// // An example of setting a limit in a number counting experiment with uncertainty on background and signal ///////////////////////////////////////// // to time the macro TStopwatch t; t.Start(); ///////////////////////////////////////// // The Model building stage ///////////////////////////////////////// RooWorkspace* wspace = new RooWorkspace(); wspace->factory("Poisson::countingModel(obs[150,0,300], sum(s[50,0,120]*ratioSigEff[1.,0,2.],b[100,0,300]*ratioBkgEff[1.,0.,2.]))"); // counting model // wspace->factory("Gaussian::sigConstraint(ratioSigEff,1,0.05)"); // 5% signal efficiency uncertainty // wspace->factory("Gaussian::bkgConstraint(ratioBkgEff,1,0.1)"); // 10% background efficiency uncertainty wspace->factory("Gaussian::sigConstraint(1,ratioSigEff,0.05)"); // 5% signal efficiency uncertainty wspace->factory("Gaussian::bkgConstraint(1,ratioBkgEff,0.1)"); // 10% background efficiency uncertainty wspace->factory("PROD::modelWithConstraints(countingModel,sigConstraint,bkgConstraint)"); // product of terms wspace->Print(); RooAbsPdf* modelWithConstraints = wspace->pdf("modelWithConstraints"); // get the model RooRealVar* obs = wspace->var("obs"); // get the observable RooRealVar* s = wspace->var("s"); // get the signal we care about RooRealVar* b = wspace->var("b"); // get the background and set it to a constant. Uncertainty included in ratioBkgEff b->setConstant(); RooRealVar* ratioSigEff = wspace->var("ratioSigEff"); // get uncertaint parameter to constrain RooRealVar* ratioBkgEff = wspace->var("ratioBkgEff"); // get uncertaint parameter to constrain RooArgSet constrainedParams(*ratioSigEff, *ratioBkgEff); // need to constrain these in the fit (should change default behavior) // Create an example dataset with 160 observed events obs->setVal(160.); RooDataSet* data = new RooDataSet("exampleData", "exampleData", RooArgSet(*obs)); data->add(*obs); RooArgSet all(*s, *ratioBkgEff, *ratioSigEff); // not necessary modelWithConstraints->fitTo(*data, RooFit::Constrain(RooArgSet(*ratioSigEff, *ratioBkgEff))); // Now let's make some confidence intervals for s, our parameter of interest RooArgSet paramOfInterest(*s); ModelConfig modelConfig(new RooWorkspace()); modelConfig.SetPdf(*modelWithConstraints); modelConfig.SetParametersOfInterest(paramOfInterest); // First, let's use a Calculator based on the Profile Likelihood Ratio //ProfileLikelihoodCalculator plc(*data, *modelWithConstraints, paramOfInterest); ProfileLikelihoodCalculator plc(*data, modelConfig); plc.SetTestSize(.05); ConfInterval* lrint = plc.GetInterval(); // that was easy. // Let's make a plot TCanvas* dataCanvas = new TCanvas("dataCanvas"); dataCanvas->Divide(2,1); dataCanvas->cd(1); LikelihoodIntervalPlot plotInt((LikelihoodInterval*)lrint); plotInt.SetTitle("Profile Likelihood Ratio and Posterior for S"); plotInt.Draw(); // Second, use a Calculator based on the Feldman Cousins technique FeldmanCousins fc(*data, modelConfig); fc.UseAdaptiveSampling(true); fc.FluctuateNumDataEntries(false); // number counting analysis: dataset always has 1 entry with N events observed fc.SetNBins(100); // number of points to test per parameter fc.SetTestSize(.05); // fc.SaveBeltToFile(true); // optional ConfInterval* fcint = NULL; fcint = fc.GetInterval(); // that was easy. RooFitResult* fit = modelWithConstraints->fitTo(*data, Save(true)); // Third, use a Calculator based on Markov Chain monte carlo // Before configuring the calculator, let's make a ProposalFunction // that will achieve a high acceptance rate ProposalHelper ph; ph.SetVariables((RooArgSet&)fit->floatParsFinal()); ph.SetCovMatrix(fit->covarianceMatrix()); ph.SetUpdateProposalParameters(true); ph.SetCacheSize(100); ProposalFunction* pdfProp = ph.GetProposalFunction(); // that was easy MCMCCalculator mc(*data, modelConfig); mc.SetNumIters(20000); // steps to propose in the chain mc.SetTestSize(.05); // 95% CL mc.SetNumBurnInSteps(40); // ignore first N steps in chain as "burn in" mc.SetProposalFunction(*pdfProp); mc.SetLeftSideTailFraction(0.5); // find a "central" interval MCMCInterval* mcInt = (MCMCInterval*)mc.GetInterval(); // that was easy // Get Lower and Upper limits from Profile Calculator cout << "Profile lower limit on s = " << ((LikelihoodInterval*) lrint)->LowerLimit(*s) << endl; cout << "Profile upper limit on s = " << ((LikelihoodInterval*) lrint)->UpperLimit(*s) << endl; // Get Lower and Upper limits from FeldmanCousins with profile construction if (fcint != NULL) { double fcul = ((PointSetInterval*) fcint)->UpperLimit(*s); double fcll = ((PointSetInterval*) fcint)->LowerLimit(*s); cout << "FC lower limit on s = " << fcll << endl; cout << "FC upper limit on s = " << fcul << endl; TLine* fcllLine = new TLine(fcll, 0, fcll, 1); TLine* fculLine = new TLine(fcul, 0, fcul, 1); fcllLine->SetLineColor(kRed); fculLine->SetLineColor(kRed); fcllLine->Draw("same"); fculLine->Draw("same"); dataCanvas->Update(); } // Plot MCMC interval and print some statistics MCMCIntervalPlot mcPlot(*mcInt); mcPlot.SetLineColor(kMagenta); mcPlot.SetLineWidth(2); mcPlot.Draw("same"); double mcul = mcInt->UpperLimit(*s); double mcll = mcInt->LowerLimit(*s); cout << "MCMC lower limit on s = " << mcll << endl; cout << "MCMC upper limit on s = " << mcul << endl; cout << "MCMC Actual confidence level: " << mcInt->GetActualConfidenceLevel() << endl; // 3-d plot of the parameter points dataCanvas->cd(2); // also plot the points in the markov chain RooDataSet * chainData = mcInt->GetChainAsDataSet(); assert(chainData); std::cout << "plotting the chain data - nentries = " << chainData->numEntries() << std::endl; TTree* chain = RooStats::GetAsTTree("chainTreeData","chainTreeData",*chainData); assert(chain); chain->SetMarkerStyle(6); chain->SetMarkerColor(kRed); chain->Draw("s:ratioSigEff:ratioBkgEff","nll_MarkovChain_local_","box"); // 3-d box proporional to posterior // the points used in the profile construction RooDataSet * parScanData = (RooDataSet*) fc.GetPointsToScan(); assert(parScanData); std::cout << "plotting the scanned points used in the frequentist construction - npoints = " << parScanData->numEntries() << std::endl; // getting the tree and drawing it -crashes (very strange....); // TTree* parameterScan = RooStats::GetAsTTree("parScanTreeData","parScanTreeData",*parScanData); // assert(parameterScan); // parameterScan->Draw("s:ratioSigEff:ratioBkgEff","","candle goff"); TGraph2D *gr = new TGraph2D(parScanData->numEntries()); for (int ievt = 0; ievt < parScanData->numEntries(); ++ievt) { const RooArgSet * evt = parScanData->get(ievt); double x = evt->getRealValue("ratioBkgEff"); double y = evt->getRealValue("ratioSigEff"); double z = evt->getRealValue("s"); gr->SetPoint(ievt, x,y,z); // std::cout << ievt << " " << x << " " << y << " " << z << std::endl; } gr->SetMarkerStyle(24); gr->Draw("P SAME"); delete wspace; delete lrint; delete mcInt; delete fcint; delete data; /// print timing info t.Stop(); t.Print(); }