///////////////////////////////////////////////////////////////////////// // // 'Number Counting Example' RooStats tutorial macro #100 // author: Kyle Cranmer // date Nov. 2008 // // This tutorial shows an example of a combination of // two searches using number counting with background uncertainty. // // The macro uses a RooStats "factory" to construct a PDF // that represents the two number counting analyses with background // uncertainties. The uncertainties are taken into account by // considering a sideband measurement of a size that corresponds to the // background uncertainty. The problem has been studied in these references: // http://arxiv.org/abs/physics/0511028 // http://arxiv.org/abs/physics/0702156 // http://cdsweb.cern.ch/record/1099969?ln=en // // After using the factory to make the model, we use a RooStats // ProfileLikelihoodCalculator for a Hypothesis test and a confidence interval. // The calculator takes into account systematics by eliminating nuisance parameters // with the profile likelihood. This is equivalent to the method of MINOS. // ///////////////////////////////////////////////////////////////////////// #ifndef __CINT__ #include "RooGlobalFunc.h" #endif #include "RooStats/ProfileLikelihoodCalculator.h" #include "RooStats/NumberCountingPdfFactory.h" #include "RooStats/ConfInterval.h" #include "RooStats/HypoTestResult.h" #include "RooStats/LikelihoodIntervalPlot.h" #include "RooRealVar.h" // use this order for safety on library loading using namespace RooFit ; using namespace RooStats ; // declare three variations on the same tutorial void rs_numberCountingCombination_expected(); void rs_numberCountingCombination_observed(); void rs_numberCountingCombination_observedWithTau(); //////////////////////////////////////////// // main driver to choose one void rs_numberCountingCombination(int flag=1) { if(flag==1) rs_numberCountingCombination_expected(); if(flag==2) rs_numberCountingCombination_observed(); if(flag==3) rs_numberCountingCombination_observedWithTau(); } ///////////////////////////////////////////// void rs_numberCountingCombination_expected() { ///////////////////////////////////////// // An example of a number counting combination with two channels. // We consider both hypothesis testing and the equivalent confidence interval. ///////////////////////////////////////// ///////////////////////////////////////// // The Model building stage ///////////////////////////////////////// // Step 1, define arrays with signal & bkg expectations and background uncertainties Double_t s[2] = {20.,10.}; // expected signal Double_t b[2] = {100.,100.}; // expected background Double_t db[2] = {.0100,.0100}; // fractional background uncertainty // Step 2, use a RooStats factory to build a PDF for a // number counting combination and add it to the workspace. // We need to give the signal expectation to relate the masterSignal // to the signal contribution in the individual channels. // The model neglects correlations in background uncertainty, // but they could be added without much change to the example. NumberCountingPdfFactory f; RooWorkspace* wspace = new RooWorkspace(); f.AddModel(s,2,wspace,"TopLevelPdf", "masterSignal"); // Step 3, use a RooStats factory to add datasets to the workspace. // Step 3a. // Add the expected data to the workspace f.AddExpData(s, b, db, 2, wspace, "ExpectedNumberCountingData"); // see below for a printout of the workspace // wspace->Print(); //uncomment to see structure of workspace ///////////////////////////////////////// // The Hypothesis testing stage: ///////////////////////////////////////// // Step 4, Define the null hypothesis for the calculator // Here you need to know the name of the variables corresponding to hypothesis. RooRealVar* mu = wspace->var("masterSignal"); RooArgSet* poi = new RooArgSet(*mu); RooArgSet* nullParams = new RooArgSet("nullParams"); nullParams->addClone(*mu); // here we explicitly set the value of the parameters for the null nullParams->setRealValue("masterSignal",0); // Step 5, Create a calculator for doing the hypothesis test. // because this is a ProfileLikelihoodCalculator plc( *wspace->data("ExpectedNumberCountingData"), *wspace->pdf("TopLevelPdf"), *poi, 0.05, nullParams); // Step 6, Use the Calculator to get a HypoTestResult HypoTestResult* htr = plc.GetHypoTest(); assert(htr != 0); cout << "-------------------------------------------------" << endl; cout << "The p-value for the null is " << htr->NullPValue() << endl; cout << "Corresponding to a signifcance of " << htr->Significance() << endl; cout << "-------------------------------------------------\n\n" << endl; /* expected case should return: ------------------------------------------------- The p-value for the null is 0.015294 Corresponding to a signifcance of 2.16239 ------------------------------------------------- */ ////////////////////////////////////////// // Confidence Interval Stage // Step 8, Here we re-use the ProfileLikelihoodCalculator to return a confidence interval. // We need to specify what are our parameters of interest RooArgSet* paramsOfInterest = nullParams; // they are the same as before in this case plc.SetParameters(*paramsOfInterest); LikelihoodInterval* lrint = (LikelihoodInterval*) plc.GetInterval(); // that was easy. lrint->SetConfidenceLevel(0.95); // Step 9, make a plot of the likelihood ratio and the interval obtained //paramsOfInterest->setRealValue("masterSignal",1.); // find limits double lower = lrint->LowerLimit(*mu); double upper = lrint->UpperLimit(*mu); LikelihoodIntervalPlot lrPlot(lrint); lrPlot.SetMaximum(3.); lrPlot.Draw(); // Step 10a. Get upper and lower limits cout << "lower limit on master signal = " << lower << endl; cout << "upper limit on master signal = " << upper << endl; // Step 10b, Ask if masterSignal=0 is in the interval. // Note, this is equivalent to the question of a 2-sigma hypothesis test: // "is the parameter point masterSignal=0 inside the 95% confidence interval?" // Since the signficance of the Hypothesis test was > 2-sigma it should not be: // eg. we exclude masterSignal=0 at 95% confidence. paramsOfInterest->setRealValue("masterSignal",0.); cout << "-------------------------------------------------" << endl; std::cout << "Consider this parameter point:" << std::endl; paramsOfInterest->first()->Print(); if( lrint->IsInInterval(*paramsOfInterest) ) std::cout << "It IS in the interval." << std::endl; else std::cout << "It is NOT in the interval." << std::endl; cout << "-------------------------------------------------\n\n" << endl; // Step 10c, We also ask about the parameter point masterSignal=2, which is inside the interval. paramsOfInterest->setRealValue("masterSignal",2.); cout << "-------------------------------------------------" << endl; std::cout << "Consider this parameter point:" << std::endl; paramsOfInterest->first()->Print(); if( lrint->IsInInterval(*paramsOfInterest) ) std::cout << "It IS in the interval." << std::endl; else std::cout << "It is NOT in the interval." << std::endl; cout << "-------------------------------------------------\n\n" << endl; delete lrint; delete htr; delete wspace; delete poi; delete nullParams; /* // Here's an example of what is in the workspace // wspace->Print(); RooWorkspace(NumberCountingWS) Number Counting WS contents variables --------- (x_0,masterSignal,expected_s_0,b_0,y_0,tau_0,x_1,expected_s_1,b_1,y_1,tau_1) p.d.f.s ------- RooProdPdf::joint[ pdfs=(sigRegion_0,sideband_0,sigRegion_1,sideband_1) ] = 2.20148e-08 RooPoisson::sigRegion_0[ x=x_0 mean=splusb_0 ] = 0.036393 RooPoisson::sideband_0[ x=y_0 mean=bTau_0 ] = 0.00398939 RooPoisson::sigRegion_1[ x=x_1 mean=splusb_1 ] = 0.0380088 RooPoisson::sideband_1[ x=y_1 mean=bTau_1 ] = 0.00398939 functions -------- RooAddition::splusb_0[ set1=(s_0,b_0) set2=() ] = 120 RooProduct::s_0[ compRSet=(masterSignal,expected_s_0) compCSet=() ] = 20 RooProduct::bTau_0[ compRSet=(b_0,tau_0) compCSet=() ] = 10000 RooAddition::splusb_1[ set1=(s_1,b_1) set2=() ] = 110 RooProduct::s_1[ compRSet=(masterSignal,expected_s_1) compCSet=() ] = 10 RooProduct::bTau_1[ compRSet=(b_1,tau_1) compCSet=() ] = 10000 datasets -------- RooDataSet::ExpectedNumberCountingData(x_0,y_0,x_1,y_1) embedded precalculated expensive components ------------------------------------------- */ } void rs_numberCountingCombination_observed() { ///////////////////////////////////////// // The same example with observed data in a main // measurement and an background-only auxiliary // measurement with a factor tau more background // than in the main measurement. ///////////////////////////////////////// // The Model building stage ///////////////////////////////////////// // Step 1, define arrays with signal & bkg expectations and background uncertainties // We still need the expectation to relate signal in different channels with the master signal Double_t s[2] = {20.,10.}; // expected signal // Step 2, use a RooStats factory to build a PDF for a // number counting combination and add it to the workspace. // We need to give the signal expectation to relate the masterSignal // to the signal contribution in the individual channels. // The model neglects correlations in background uncertainty, // but they could be added without much change to the example. NumberCountingPdfFactory f; RooWorkspace* wspace = new RooWorkspace(); f.AddModel(s,2,wspace,"TopLevelPdf", "masterSignal"); // Step 3, use a RooStats factory to add datasets to the workspace. // Add the observed data to the workspace Double_t mainMeas[2] = {123.,117.}; // observed main measurement Double_t bkgMeas[2] = {111.23,98.76}; // observed background Double_t dbMeas[2] = {.011,.0095}; // observed fractional background uncertainty f.AddData(mainMeas, bkgMeas, dbMeas, 2, wspace,"ObservedNumberCountingData"); // see below for a printout of the workspace // wspace->Print(); //uncomment to see structure of workspace ///////////////////////////////////////// // The Hypothesis testing stage: ///////////////////////////////////////// // Step 4, Define the null hypothesis for the calculator // Here you need to know the name of the variables corresponding to hypothesis. RooRealVar* mu = wspace->var("masterSignal"); RooArgSet* poi = new RooArgSet(*mu); RooArgSet* nullParams = new RooArgSet("nullParams"); nullParams->addClone(*mu); // here we explicitly set the value of the parameters for the null nullParams->setRealValue("masterSignal",0); // Step 5, Create a calculator for doing the hypothesis test. // because this is a ProfileLikelihoodCalculator plc( *wspace->data("ObservedNumberCountingData"), *wspace->pdf("TopLevelPdf"), *poi, 0.05, nullParams); wspace->var("tau_0")->Print(); wspace->var("tau_1")->Print(); // Step 7, Use the Calculator to get a HypoTestResult HypoTestResult* htr = plc.GetHypoTest(); cout << "-------------------------------------------------" << endl; cout << "The p-value for the null is " << htr->NullPValue() << endl; cout << "Corresponding to a signifcance of " << htr->Significance() << endl; cout << "-------------------------------------------------\n\n" << endl; /* observed case should return: ------------------------------------------------- The p-value for the null is 0.0351669 Corresponding to a signifcance of 1.80975 ------------------------------------------------- */ ////////////////////////////////////////// // Confidence Interval Stage // Step 8, Here we re-use the ProfileLikelihoodCalculator to return a confidence interval. // We need to specify what are our parameters of interest RooArgSet* paramsOfInterest = nullParams; // they are the same as before in this case plc.SetParameters(*paramsOfInterest); LikelihoodInterval* lrint = (LikelihoodInterval*) plc.GetInterval(); // that was easy. lrint->SetConfidenceLevel(0.95); // Step 9c. Get upper and lower limits cout << "lower limit on master signal = " << lrint->LowerLimit(*mu ) << endl; cout << "upper limit on master signal = " << lrint->UpperLimit(*mu ) << endl; delete lrint; delete htr; delete wspace; delete nullParams; delete poi; } void rs_numberCountingCombination_observedWithTau() { ///////////////////////////////////////// // The same example with observed data in a main // measurement and an background-only auxiliary // measurement with a factor tau more background // than in the main measurement. ///////////////////////////////////////// // The Model building stage ///////////////////////////////////////// // Step 1, define arrays with signal & bkg expectations and background uncertainties // We still need the expectation to relate signal in different channels with the master signal Double_t s[2] = {20.,10.}; // expected signal // Step 2, use a RooStats factory to build a PDF for a // number counting combination and add it to the workspace. // We need to give the signal expectation to relate the masterSignal // to the signal contribution in the individual channels. // The model neglects correlations in background uncertainty, // but they could be added without much change to the example. NumberCountingPdfFactory f; RooWorkspace* wspace = new RooWorkspace(); f.AddModel(s,2,wspace,"TopLevelPdf", "masterSignal"); // Step 3, use a RooStats factory to add datasets to the workspace. // Add the observed data to the workspace in the on-off problem. Double_t mainMeas[2] = {123.,117.}; // observed main measurement Double_t sideband[2] = {11123.,9876.}; // observed sideband Double_t tau[2] = {100.,100.}; // ratio of bkg in sideband to bkg in main measurement, from experimental design. f.AddDataWithSideband(mainMeas, sideband, tau, 2, wspace,"ObservedNumberCountingDataWithSideband"); // see below for a printout of the workspace // wspace->Print(); //uncomment to see structure of workspace ///////////////////////////////////////// // The Hypothesis testing stage: ///////////////////////////////////////// // Step 4, Define the null hypothesis for the calculator // Here you need to know the name of the variables corresponding to hypothesis. RooRealVar* mu = wspace->var("masterSignal"); RooArgSet* poi = new RooArgSet(*mu); RooArgSet* nullParams = new RooArgSet("nullParams"); nullParams->addClone(*mu); // here we explicitly set the value of the parameters for the null nullParams->setRealValue("masterSignal",0); // Step 5, Create a calculator for doing the hypothesis test. // because this is a ProfileLikelihoodCalculator plc( *wspace->data("ObservedNumberCountingDataWithSideband"), *wspace->pdf("TopLevelPdf"), *poi, 0.05, nullParams); // Step 7, Use the Calculator to get a HypoTestResult HypoTestResult* htr = plc.GetHypoTest(); cout << "-------------------------------------------------" << endl; cout << "The p-value for the null is " << htr->NullPValue() << endl; cout << "Corresponding to a signifcance of " << htr->Significance() << endl; cout << "-------------------------------------------------\n\n" << endl; /* observed case should return: ------------------------------------------------- The p-value for the null is 0.0352035 Corresponding to a signifcance of 1.80928 ------------------------------------------------- */ ////////////////////////////////////////// // Confidence Interval Stage // Step 8, Here we re-use the ProfileLikelihoodCalculator to return a confidence interval. // We need to specify what are our parameters of interest RooArgSet* paramsOfInterest = nullParams; // they are the same as before in this case plc.SetParameters(*paramsOfInterest); LikelihoodInterval* lrint = (LikelihoodInterval*) plc.GetInterval(); // that was easy. lrint->SetConfidenceLevel(0.95); // Step 9c. Get upper and lower limits cout << "lower limit on master signal = " << lrint->LowerLimit(*mu ) << endl; cout << "upper limit on master signal = " << lrint->UpperLimit(*mu ) << endl; delete lrint; delete htr; delete wspace; delete nullParams; delete poi; }