
Precise 
Representation

The Enlightenment: 
Newton

the apple, or not.



remember, at home 
during plague (and 
fire that flattened 

London)
his “anni mirabiles”

first ideas about gravitation, optics, light, calculus



Principia
Definitions, Axioms (Laws), Propositions, Lemmas 
(assumptions), Corollaries and Scholia (notes)

First, relevant definitions:

mass: “The quantity of matter is the measure of the same, 
arising from its density and bulk conjointly…”

not very satisfying… More notions of “mass” will follow…

Think of it as the amount of ‘stuff’ in an object
But boy, is mass a tricky concept.



Principia
“quantity of motion”: “The quantity of motion is the measure of 
the same, arising from the velocity and quantity of matter 
conjointly…”

Or...finally…in modern terms:

momentum: p = m v…which we recognize now as a vector.

m with speed v

p1 or p1 

2m with speed v
p2 or p2 = 2 p1 

p4 or p4 ≠ p1 

m with speed 2v
p3 or p3 = 2 p1 



ta -da!
Axiom I “Every body continues in its state of rest, or of uniform motion in a right line, 
unless it is compelled to change that state by forces impressed upon it”.

(Descartes, Huygens, and Galileo knew this…so-called “Principle of Inertia”)

we say: Every body remains at rest or continues uniform motion in a straight 
line unless a net force acts on it.

Axiom II “The change of motion is proportional to the motive force impressed; and is 
made in the direction of the right line in which that force acts.” 

(Galileo and Kepler almost knew this…)

we say: The change of momentum of a body is directly proportional to an 
external force applied to it. We now say, that the change of momentum with 
respect to time is equal to an external force applied to it.

Axiom III “To every action there is always opposed an equal reaction; or, the mutual 
actions of two bodies upon each other are always equal, and directed to contrary parts.”

we say: To every action there is an equal and oppositely directed reaction. 

(Bingo. Brand New…#3 makes mechanics possible)





Newton’s Second Law
that’s the one with the mathematical content

In general terms it is not: 

F = ma

It says that

“The change of motion is proportional to the motive force impressed.” 



Strictly speaking, what he stated is

∆!p ∝ !F (26)

which we today represent as
∆!p

∆t
= !F (27)

However, there are many uses of the Second Law. He also
makes use of

!F∆t = ∆!p (28)

There is some physics in this. It says that if you apply a
force to a body for a time, ∆t, that body will change its
momentum by ∆!p. Today, this quantity on the left is called
the Impulse.

You make use of the concept unconsciously. Suppose you
jump off a chair. Just before you hit the ground, your velocity
is v0 = V (−j), pointing DOWN. Just after you stop, your
velocity is vf = 0. The CHANGE in your velocity is

∆v = vf − v0 = 0− (−V )

That’s a given. So, in magnitude,

Ft = mV.

What’s important to you is the stress on your knees. . . the
force, F that results. You can keep that as small as possible
by making t as long as possible: you bend your knees.

Likewise, if you want to impart a large change of momentum,
you apply the largest force you can for the longest time that
you can. Think baseball.

11

Strictly speaking, what he stated is

∆!p ∝ !F (26)

which we today represent as
∆!p

∆t
= !F (27)

However, there are many uses of the Second Law. He also
makes use of

!F∆t = ∆!p (28)

There is some physics in this. It says that if you apply a
force to a body for a time, ∆t, that body will change its
momentum by ∆!p. Today, this quantity on the left is called
the Impulse.

You make use of the concept unconsciously. Suppose you
jump off a chair. Just before you hit the ground, your velocity
is v0 = V (−j), pointing DOWN. Just after you stop, your
velocity is vf = 0. The CHANGE in your velocity is

∆v = vf − v0 = 0j− V (−j)
using just magnitudes in the y direction...

∆v = 0− (−V ) = V

That’s a given. So, in magnitude, Ft = mV.

What’s important to you is the stress on your knees. . . the
force, F that results. You can keep that as small as possible
by making t as long as possible: you bend your knees.

Likewise, if you want to impart a large change of momentum,
you apply the largest force you can for the longest time that
you can. Think baseball.

11

Strictly speaking, what he stated is

∆!p ∝ !F (26)

which we today represent as
∆!p

∆t
= !F (27)

However, there are many uses of the Second Law. He also
makes use of

!F∆t = ∆!p (28)

There is some physics in this. It says that if you apply a
force to a body for a time, ∆t, that body will change its
momentum by ∆!p. Today, this quantity on the left is called
the Impulse.

You make use of the concept unconsciously. Suppose you
jump off a chair. Just before you hit the ground, your velocity
is v0 = V (−j), pointing DOWN. Just after you stop, your
velocity is vf = 0. The CHANGE in your velocity is

∆v = vf − v0 = 0j− V (−j)
using just magnitudes in the y direction...

∆v = 0− (−V ) = V

That’s a given. So, in magnitude, Ft = mV.

What’s important to you is the stress on your knees. . . the
force, F that results. You can keep that as small as possible
by making t as long as possible: you bend your knees.

On the other hand, if you want to impart a large change
of momentum, you apply the largest force you can for the
longest time that you can. Think baseball.

11

Strictly speaking, what he stated is

∆!p ∝ !F (26)

which we today represent as
∆!p

∆t
= !F (27)

However, there are many uses of the Second Law. He also
makes use of

!F∆t = ∆!p (28)

There is some physics in this. It says that if you apply a
force to a body for a time, ∆t, that body will change its
momentum by ∆!p. Today, this quantity on the left is called
the Impulse.

You make use of the concept unconsciously. Suppose you
jump off a chair. Just before you hit the ground, your velocity
is v0 = V (−j), pointing DOWN. Just after you stop, your
velocity is vf = 0. The CHANGE in your velocity is

∆v = vf − v0 = 0j− V (−j)
using just magnitudes in the y direction...

∆v = 0− (−V ) = V

That’s a given. So, in magnitude, Ft = mV.

What’s important to you is the stress on your knees. . . the
force, F that results. You can keep that as small as possible
by making t as long as possible: you bend your knees.

On the other hand, if you want to impart a large change
of momentum, you apply the largest force you can for the
longest time that you can. Think baseball.

11

Strictly speaking, what he stated is

∆!p ∝ !F

which we today represent as

∆!p = !F∆t

However, there are many uses of the Second Law. He also
makes use of

!F∆t = ∆!p

There is some physics in this. It says that if you apply a force
to a body for a time, ∆t, that body will change its momentum
by ∆!p. Today, this quantity on the right is called the Impulse.

You make use of the concept unconsciously. Suppose you
jump off a chair. Just before you hit the ground, your velocity
is v0 = V (−j), pointing DOWN. Just after you stop, your
velocity is vf = 0. The CHANGE in your velocity is

∆v = vf − v0 = 0j− V (−j)
using just magnitudes in the y direction...

∆v = 0− (−V ) = V

That’s a given. So, in magnitude, Ft = mV.

What’s important to you is the stress on your knees. . . the
force, F that results. You can keep that as small as possible
by making t as long as possible: you bend your knees.

On the other hand, if you want to impart a large change
of momentum, you apply the largest force you can for the
longest time that you can. Think baseball.

11

Strictly speaking, what he stated is

∆!p ∝ !F

which we today represent as

∆!p = !F∆t

However, there are many uses of the Second Law. He also
makes use of

!F∆t = ∆!p

There is some physics in this. It says that if you apply a force
to a body for a time, ∆t, that body will change its momentum
by ∆!p. Today, this quantity on the right is called the Impulse.

You make use of the concept unconsciously. Suppose you
jump off a chair. Just before you hit the ground, your velocity
is v0 = V (−j), pointing DOWN. Just after you stop, your
velocity is vf = 0. The CHANGE in your velocity is

∆v = vf − v0 = 0j− V (−j)
using just magnitudes in the y direction...

∆v = 0− (−V ) = V

That’s a given. So, in magnitude, Ft = mV.

What’s important to you is the stress on your knees. . . the
force, F that results. You can keep that as small as possible
by making t as long as possible: you bend your knees.

On the other hand, if you want to impart a large change
of momentum, you apply the largest force you can for the
longest time that you can. Think baseball.

11

So, the formal way of viewing this notion of the Second Law,
is to note that we can write

!F =
∆!p

∆t

If we use the calculus, and then take the limit as ∆t → 0,
then we get the formal definition of the force

!F =
d!p

dt

12

So, the formal way of viewing this notion of the Second Law,
is to note that we can write

!F =
∆!p

∆t

If we use the calculus, and then take the limit as ∆t → 0,
then we get the formal definition of the force

!F =
d!p

dt

12



The other way that the second law is used. . . was never writ-
ten down by Newton, rather was first used by Leonhard Euler
in 1752 (one of the many brilliant physicists who came after
and cleaned up and formalized Newton’s ideas).

Notice that ∆p means calculate the CHANGE of momen-
tum. . . which consists of mv. So, if the mass is constant,
then ∆p = m∆v. So, we get:

!F = m
∆!v

∆t
=

!vf − !v0

∆t

Since, ∆v/∆t is the acceleration, we have the famous state-
ment which has bedeviled engineering students for 250 years:

!F = m!a . . . actually, this means:
n∑

i=1

!Fi = m!a.

This says that the total sum of all forces (vector sum) acting
on a body will result in an acceleration !a imparted to that
body. That’s it...that’s all of engineering and much of the
space program.
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“
Kepler

If you substitute the word “force” [vis] for the 
word “soul” [anima], you have the 
very principle on which the celestial 
physics in Astronomia Nova is based. 
For I formerly believed completely that the cause 
moving the planets is a soul...But when I 
recognized that this motive cause grows weaker 
as the distance from the sun increases, just as the 
light of the sun is attenuated, I concluded that this 
force must be as it were corporeal.

just gotta like that guy



speaking of Kepler

Back to the moon, Alice...



notice: limits 
figure into his 

arguments
even though it’s strictly geometrical

he’s working on enhancing the earlier approach



Kepler’s 2nd Law

As an example of his (non-calculus, but geometrical) 
reasoning in Principia:

Suppose we have a body executing inertial motion, 
marking out AB, BC, etc in time intervals T.

Then with respect to some point in space:

A B C DH

O

uniform motion

from the constant velocity condition and the rule for triangle 
area, the areas of all of these triangles are equal:

€ 

1/2AB×OH =1/2BC×OH =1/2CD×OH = ...

Now, suppose that at B, the object is given a kick 
toward O

He showed that if the body would have gone to c 
during T, in absence of the kick, that it actually 
traveled distance equivalent to Bc’ during T. He then 
showed that the area of OCB is equal to the area 
OBc…(if cC and OB are parallel)

So the equal area rule holds when the circumstance is 
a impulsive force toward O. 

He then presumes the distances small, so the number 
of triangles is infinite. Then, the object travels on a 
circle. It was a short step to Kepler’s 3rd law from 
here.

This is Kepler’s Area Law…

O A

B

c
C

c’



it falls into place

an embarrassment for …the Mint:



1/r2 force laws were 
“in the air”

maybe because that’s how the surface area of a sphere 
increases with radius?



remember Kepler’s 3rd 
law:

R: mean radius

T: period

Kepler determined it for planets going around the sun

R3

T 2
= constant



the moon, redux
There is a geometrical theorem that says: MA2 = AM’•AD...let the distance AM’ = s

Moon has speed, v...tangent to its path.
In some time, t, absent a pull from earth, the moon would travel the distance MA

so, vt = MA and from the geometrical theorem: (vt)2 = s (s + 2 RM)

The actual trajectory is presumed by him to be one of infinitesimal tugs

So, MA is very short, and hence s is tiny, certainly relative to RM

Then, (vt)2 = 2 s RM

From Galileo’s relation for constant acceleration: s = 1/2 a t2 where a is a constant 
and pointing to the earth.

Write this differently. Let T be the period of the moon’s orbit, so vT = 2πRM

M A

M’

vt

RM

RE
E

D

s

From Kepler’s 3rd Law = constant, KE for the Earth-Moon system 
(a different K for orbits around another center...like planets-sun

Solve for s / t2 and substitute and the result is: a=
v2

RM

So, the acceleration is:

and hence, the force is 1
r2

a =
4π2KE

R2
M



circular motion was 
a toughy

“centripetal” acceleration…it points in

 
\’sen-’trip-et-’l\ 

adj [NL centripetus, fr. centr-+L petere to go to, seek]



r

v

s

suppose we have an object approaching the inside of a rim 
of radius r with speed v, traveling on a square of side s 
inscribed in the circle

it perfectly rebounds - reflects - at an angle equal to its 
original incidence

look at components of the velocity before and after 
the rebound and calculate the vector difference:

change in:   v = v(final) – v(initial)

v v

What is that change in velocity? It’s due ONLY to the change in 
direction: the final velocity minus the initial velocity:

Δv = 

the two vertical components

add and point IN

the two 
horizontal 

components 
cancel

 Δv = twice the vertical component, down

       =  2 v / √2, since it’s a square

Since there is a change in velocity, there is an 
acceleration:

we just did this

the time between collisions

from the geometry

definition of acceleration

just plugging in…

...an acceleration which points toward the center of the circle…
called “centripetal” - ALL NON-STRAIGHT MOTION IS 
ACCELERATED MOTION

In the spirit of extrapolating to limiting cases…any polygon, up to 
an infinitely sided one would give same result. That’s circular 
motion, in that limit…1665 or so.

Δv = 

v

19



centripetal force
•So, for something (moon) to move in a circle requires lots of little 
tugs towards the center
 This overall force toward the center is the Centripetal Force

 It has the same direction as the centripetal acceleration

Weight supplies a force to the rope

centripetal force of rope pulling on ball v, the speed tangent to the path

and remember:Fcent=macent

=m
v2

r

=m
4π2K
r2

a =
4π2KE

R2
M



put on your seat 
belt

this is cool:



€ 

τ = 2π L
g

Galileo and Newton knew that the period of a pendulum was 
“powered” by the same acceleration source that things on inclined 
planes were..or freely falling bodies

call that acceleration of gravity on earth: g

Further, they knew that the period (τ ) depended only on the length of 
the string, L. Newton calculated it and then measured them carefully.

He did experiments on 10’ long 
pendula and measured many things…
among them, he found that the 
acceleration due to gravity, g, was 
approximately 

g = 32 ft per second per second



the apple moment:

the centripetal force
of an object orbiting 
at the earth’s surface

F = macent

How about the moon?
same form

RE

RE

rm

KE =
r3
m

τ2
m

S o , u s e t h e m o o n t o  
calculate the Kepler constant:

acent(near earth) =
4π2KE

R2
E

acent(moon) =
4π2KE

r2
m

acent(near earth) =
4π2

R2
E

(
r3
m

τ2
m

)



bingo.

Lookit! The same value for the acceleration due to gravity that he measured with pendula.

...calculated using numbers for the Moon.

acent =
4π2

R2
E

(
r3
m

τ2
m

)

He knows: rm = 60.1 • RE; RE = 4000 mi; τm = 27.3 d 



so...
the Moon is held in 
orbit by the same 

force
that holds things on earth

Planets the same idea? 

Different “K” for things around the Sun from the 
Moon (and us) around the Earth!



Using: MS as the mass of the sun & m as the mass of a planet at 
radius r and 

Fcent = m ac:

Now, he makes a breathtaking leap: Suppose m and m’ are the masses of any two objects that 
are separated by distance r…He postulates that there is a gravitational force acting between them of

	 	

€ 

F =Gmm'
r2

G is a universal constant, for all bodies. Notice that his 
3rd law is working here as each body attracts the other - symmetric in m and m’.

€ 

F =
4π 2K
MS

 

 
 

 

 
 
MSm
r2

= G MSm
r2

€ 

Fc = 4π 2K m
R2

multiply by 1 = MS/MS

Note: this is an example of “Action-Reaction”: planet attracts 
the sun and the sun attracts the planet - equal and opposite



•his link between the orbit of the moon and acceleration of gravity on earth 
led him to a new interpretation of planetary motion

 it’s all falling
recall our discussion of centripetal 
acceleration derived by little impulses of 
force

that’s the same as saying that objects 
go a bit, fall a bit, go a bit, fall a bit...

in the limit that “a bit” is infinitesimal - 
this description is of continuous, 
orbital motion

He showed that in the Principia by the above legendary picture of a cannon being shot at increasingly large 
velocities.

at some point*, the cannon ball falls and misses the earth...and just continues to fall (orbit)

* the escape velocity:                                     ...good for any object, of any mass. 

€ 

vesc =
2GME
RE



“Gee”-Whiz.

G, the gravitational constant, is very hard to 
measure precisely

was first done only about a century later by the 
totally strange Henry Cavendish

Today, G = 6.673(10) x 10-11 m3/kgs2



note

G is still hard to measure, but needs to be done 
better



the “2” in 1/r2 is 
important
is directly related to there being 3 space 
dimensions…

the degree to which “2” has been determined is 
surprisingly not so great

Current elementary particle theory is inching toward interest in 
space+time dimensions which are more than 3+1

it seems that we cannot rule out the possibility of more than 
3 space dimensions from any experiment

indeed, we will be searching for the effects of this in upcoming experiments in 
Illinois and Switzerland



Cavendish Experiment
G was finally measured in 1798, but not known to have been measured (!) 
until nearly a century later. Henry was a little secretive.

torsional balance

with a quartz fiber...carefully measure

the angle of deflection using light and mirrors

(not smoke and mirrors...)

Cavendish got within 1% of the modern value...among other very precise, 
extraordinary experiments...he was 50 years ahead of his time in optics, chemistry, 
electromagnetism...



massive 
disk

you, in the audience
a tiny bit of the 
disk...with a mass 
of δm

another tiny bit of the 
disk...with a mass of δm

what’s the direction of the force between you and  each tiny bit?
what’s the direction of the NET attractive force between you and the two bits together?
add up enough bits to cover the entire disk...where does the attractive force between you and the whole disk 
point?

the presumption about gravitational 
bodies was that they were point-sized…
what about extended objects?

calculus by waving your 
arms



•There is magic in the inverse-square law…

P

outside of  spherical volume of mass, the force on a mass m at a 
point outside can be calculated by adding up contributions from 
shells of mass (a nice problem in integral calculus). 

The result: the same force at P is calculated as if one just assumes 
that the whole mass of the sphere is concentrated at its center of 
mass. (This was proved generally by Gauss a century later, which is 
applicable in electromagnetic configurations.) 

m

M



we need to be careful about our terminology: does the moon really orbit the earth? Does 
the earth really orbit the sun? no.

some LARGE gravitational mass another LARGE, identical gravitational mass

who orbits whom?

X

X

Newton’s 3rd law at work...



But weight,
there’s more.

If acceleration varies like the distance from a 
mass

what about Galileo’s conclusion that free-fall was 
a constant acceleration phenomenon?



RE

y

Consider a mass m at a distance y above the surface 
of the earth, where y is, say, less than an airliner’s 
typical altitude of 5 miles. 

Remember, that RE = 4000 mi, so fractionally,  we’re 5/4000 = 0.00125 further 
away than the surface…

  

€ 

Fy = G MEm
RE + y( )2

= G MEm

RE
2 (1+ y

RE
)2

= GMEm
RE
2 (1+ y

RE
)−2

= GMEm
RE
2 1−2 y

RE

 

 
  

 

 
  +3

y
RE

 

 
  

 

 
  

2

− 4 y
RE

 

 
  

 

 
  

3

+K
 

 

 
 

 

 

 
 

remember the Binomial expansion

Clearly, the first term is sufficient, so 
that for this tiny r:

€ 

Fy =G MEm
RE
2

…which is a constant, so we’re 
justified in defining and using

€ 

g =GME

RE
2

so that:

€ 

Fy =mg

This is the Weight…the force of 
the Earth’s gravitational force.



mass 

heavy idea, man.



However, this masks a deeper conceptual issue: mass has been 
used in two ways in the previous discussion:

inertial mass: We can keep track of an “inertial mass” mi, 
which is in the Second Law, F = mia. This is the resistance that 
the body has to being accelerated under the application of any 
force…the inertia.

gravitational mass: The use of mass in the gravitational law, mg, 
is different: here the force is F = GMmg / r2 and m is just a 
measure of the response that a body feels under the 
gravitational force of attraction.

Until the 20th century, these were dealt with as equal with 
experiment as the excuse.

Remember, Newton’s definition of mass was less than satisfying.

The modern, intuitive notion works: mass is the quantity of matter 
which constitutes an object.



•Newton knew: The quantities of matter in pendulous bodies, whose centers 
are equally distant from the center of suspension are in the ratio compounded of 
the ratio of the weights and the squared ratio of the times of the oscillation in a 
vacuum.

this is his olde-timey way of saying that the inertial mass is proportional to the 
product of the period of a pendulum times the weight…

The period (back and forth) of a pendulum of length L is,

substituting for the weight,

By carefully measuring and comparing periods of pendulum bobs of different 
materials, but same weights, he concluded that the two masses were the same. Also, 
if you look at the use of Kepler’s 3rd law  in the gravitation discussion, you’ll see that 
the Moon argument would not work

€ 

τ = 2π miL
W

€ 

τ = 2π L
g
mi
mg



•just to be sure we’re on the same page:

•   W
 = mg


•W/g
 = m

•W/m
 = g

•Units
 English System: mass: slugs; Force: pounds, lb: 1lb = 1 slug ft/s2

 MKS System: mass: kilogram, kg; Force: Newtons, N: 1N = 1 kg m/s2

changes, depending on planet

same, anywhere in the universe

same for all objects on the surface of the earth


