now for something

completely different.

"gauge theories"

a story

introduction uses of symmetry gauge principle weak interactions critical phenomena Broken symmetry Higgs, et al. mechanism

all together: the Weinberg-Salam Model

we laugh at kepler now

he believed in a symmetry

built his world around it

for others:

perfect symmetry ruled-circles

are we different?

what about Einstein?

He didn't invent the transformations

done before him.

He didn't establish the mathematical rigor

done before him.

He derived the results

arguing for an a-priori prejudice about symmetry

field theory

primer

the players

Spin 0 Bosons:

Spin 1 Vector bosons:

 A_{μ} , B_{μ} , W_{μ}

Spin 1/2 Fermions:

Ψ

φ

use Lagrangians

Lagrange's Equations

 \rightarrow quantum equations of motion $\partial_{\mu} \rightarrow \partial/\partial x^{\mu}$

a catalog will suffice

FREE LAGRANGIANS

scalar fields:

 $\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} m^2 \phi^2$

EQUATIONS OF MOTION

 $\partial_{\mu}\partial^{\mu}\phi + m^{2}\phi^{2} = 0$

interactions

INTERACTIONS -

particle creation

PARTICLE SPECTRA -

$$\phi(x) = \int \frac{d^{3}k}{(2\pi)^{3}} 2w_{k} \left[a(b)e^{-ikx} + a^{\dagger}(b)e^{-ikx} \right]$$
(2\pi) (2\pi) (2\pi) (2\pi) (2w_{k}) (2\pi) (2\pi) (2w_{k}) (2\pi) (2w_{k}) (2\pi) (2w_{k}) (

symmetry in quantum mechanics

Group operations represented by operators, U,

generated by G in a linear vector space of vectors $|\alpha >$

vectors transform: $|\alpha\rangle \longrightarrow |\alpha'\rangle = U|\alpha\rangle$ operators transform: $0 \longrightarrow 0' = U0U^{-1}$

If a system is symmetric wrt U, $[\mathcal{H}, G] = 0$

Noether's Theorem

If a system has a symmetry

there is an associated conservation law space translation \rightarrow momentum conservation, **p** time translation \rightarrow energy conservation, *E*

Also, for "internal symmetries"

phase transformation \rightarrow charge conservation, Q

• OF PARTICULAR INTEREST ARE SYMMETRY GROUPS WITH REPRESENTATIONS LIKE $U(z) = e^{-i\sum_{j} \sum_{j} Q_{j}^{j}}$ "GENERATORS" OF THE GROUP & OPERATORS (UFINITESIMAL PARAMETERS AS EIGENVALUES

charges and conserved currents

· CONNECTION THROUGH "CHARGE" & A CONSERVED "CURRENT" -

 $Q \equiv \int d^3x \, j^o(x)$

where $\partial_{\mu} j^{\mu}(x) = 0$ signifies a conservation law

Q plays a dual role: both a "charge" and the generator of the transformation

quantum field theory: I slide

- $\phi \rightarrow \phi' = u \phi u^{-1}$ \$\overline{\phi(x)}\$ IS AN OPERATOR $= (1 - i \sum_{i=1}^{j} \varepsilon^{i} \alpha^{i}) \phi(1 + i \sum_{i=1}^{j} \alpha^{i})$ = $\phi + i \sum_{i=1}^{j} \varepsilon^{i} \alpha^{i}, \phi(x)$ 50 $[Q^3, \phi(x)] = \phi(x) \Rightarrow$ (note: often UQU' = exp(i Ssiqi) \$(x) ... a phase)
 - SUPPOSE [H,Q]=0 ⇒ ∂₀Q=0 LET HIPN = ENIPNY

THEN QHIPN> = ENQIPN>] IPN> & QIPN> ARE

HUIPAN = ENGIPAN | WITH SAME En- desenance WITH SAME En- degenerate -> MAY REPRESENT ORTHOGONAL STATES WITH DISTINCT QUANTUM NUMBERS ...

1 lied...2 slides

THERE IS A SPECIAL EIGENSTATE OF H... THE VACUUM.
 HIO) = 0 IS ALWAYS TRUE FOR VACUUM STATE
 USUALLY, IT IS ASSUMED THAT, FOR U = e^{iQx}
 UIO> = IO> FOR ALL SYMMETRIES
 => QIO> = D

IF ALSO [H,Q]=0. Stay tuned!

a little bit of history...repeating

Soon after general relativity

H. Weyl proposed:

HE ADDED INVARIANCE WITH RESPECT TO

a.
$$g_{\mu\nu} = \lambda(x)g_{\mu\nu}$$
 same $\lambda(x)$ phase
b. $A_{\mu} = A_{\mu} - \frac{\partial \lambda(x)}{\partial x^{\mu}}$

note: b. is E&M...a. is strange.

space and time can change...all over space and time he called it a "gauge"

ds'= gav dx dx dx > > > > > > LENGTHS ARE RE"GAUGED"

The thing that holds spacetime together? The Photon

Einstein dug it...sorta

"Your ideas show a wonderful cohesion. Apart from agreement with reality, it is at any rate a grandiose achievement of mind."

This early attempt to unify E&M with gravity failed.

1927

London revived the idea

Not a scale of spacetime A **phase** in quantum fields

first kind: GLOBAL U(1) symmetry

"GLOBAL" => SAME PHASE, INDEPENDENT OF SPACETIME 0 = 0(x)

"U(1)" ⇒ 1 PARAMETER LIE GROUP HAVING Q AS GENERATOR

 $\Psi(x) \longrightarrow \Psi'(x) = U \Psi(x) U^{-1}$ = $e^{i\theta q} \Psi(x)$

other kind: LOCAL U(1) symmetry

$$\mathcal{U}(\theta) = e^{i\theta(x)Q}$$

"LOCAL" => POTENTIALLY DIFFERENT PHASE AT ALL SPACETIME POINTS 0=0(x)

4(x) -> 4'(x) = e 20(x)9 4(x)

NOT SO SIMPLE

the derivative is trouble

define a new divergence

to cancel the unwanted term

Goal: get the gradient to transform invariantly

$$(D_{\mu}\Psi) \longrightarrow (D_{\mu}\Psi)' = e^{iq\Theta(w)}(D_{\mu}\Psi)$$

• START OUT WITH $\mathcal{L} = \overline{\Psi}(x) [i \delta^m D_\mu - m] \Psi(x)$ = $\overline{\Psi}(x) [i \delta^m \partial_\mu + i \delta^m X_\mu - m] \Psi(x)$

transform 4->4

Du

$$\mathcal{I}(4) \longrightarrow \mathcal{I}(4') = \overline{\Psi}(x) \{ i \delta^{\mu} [\partial_{\mu} + X_{\mu} - i q \partial_{\mu} \theta(x)] - m \} \Psi'(x)$$

STILL NOT RIGHT!

one more ingredient

must simultaneously transform $X_{\mu} \rightarrow X_{\mu} = X_{\mu} - iq \partial_{\mu} \Theta(x)$ and! Denote $X_{\mu} \equiv iq A_{\mu}(x) \Rightarrow the gradient looks like$ $<math>D_{\mu} \equiv \partial_{\mu} + iq A_{\mu}$

2 TOTAL TRANSFORMATION NECESSARY TO LEAVE & ALONE 15:

Turns the utility of ληθωωλs

upside down

If invariance with respect to a local U(1) symmetry is, a priori, of paramount importance:

demanding a symmetry

forces the inclusion of a spin-1 field specifies the interaction with spin-1/2 fields

V(1) is good

How about SU(2)?

The project of Yang and Mills in 1954

A local SU(2) symmetry

leads to an isotriplet of spin-1 fields

DEMANDING
$$U = e^{i\sum_{n=1}^{\infty} \overline{b}_{n}(x)} \langle \frac{z \ changed}{1 \ neutral}$$

isovector $\frac{1}{2}$
Loventz vector

Young - Mills Theory

AGAIN:
$$\mathcal{L} = \overline{\Psi}(i8^{m}\partial_{\mu} - m)\Psi$$

now $\Psi = \begin{pmatrix} \Psi_{1} \\ \Psi_{2} \end{pmatrix}$ as bases for $su(2)$ operators

close, but not somuch

one might have hoped that the *b* might have turned out to be the W^{\pm} Boson

But the weak interaction is short-ranged and so the W would be heavy

Masslessness of b_{μ} was a fatal flaw.

circa 1960...a primer

Since Pauli and Fermi in 1930s

There had been

20 years of contradictory experimental results a beautiful theory–1958 Feynman and Gell-Mann

W[±]: charged isospin raising/lowering massive

there were problems:

Massless spin 1: 2 dof...e.g. L,R polarizations

MassIVE spin 1: 3 dof...e.g. L,R polarizations + longitudinal polarization

 $\epsilon^{\mu}(\lambda=0) \sim \frac{k^{\mu}}{M}$

in E&M...2 photon production:

both graphs required because of gauge invariance

If you pretend that the photon had a mass... the bad behavior term cancels between the graphs

spoiler:

in hindsight: this cancellation can be arranged for weak interactions:

either, require a new, or, require a new, heavy heavy electron spin 1 field

E&M is magic

same coupling of photon to electron & proton:

(messy hadron)

SAME COUPLING (in limit)

ditto, weak interactions:

could it be?

that the regal

electromagnetic interaction

might be related to the rag-tag, ill-behaved, badly-bred

weak interaction?

many tried:

Schwinger, Salam, Ward, Glashow, Weinberg...

all used Yang-Mills theory Salam: "dream" of Weak and Electromagnetic interaction unification...

$$\begin{pmatrix} w^+\\ \delta\\ w^- \end{pmatrix}$$
? $\begin{pmatrix} w^+\\ z^\circ\\ w^- \end{pmatrix}$ is massly block.

masslessness of Walways blocked progress

critical phenomena

circa 1960...a primer

MENU

UN APERITIF

ther modynamics of phase transformations

UNE ENTRÉE

Mean Field theory and Ginsburg-Landau phenomenology

LE PLAT PRINCIPAL

Ferromagnetism as an example of a broken symmetry

LE FROMAGE

Goldstone Theorem

LE DESSERT

Dilute Base Gas as an example of the G.Z.

UN DIGESTIF

Superconductivity as an example of the loophobe

what's a phase?

a region of analyticity of the free energy

latent heat

EQUILIBRIUM BETWEEN 5 \$ 4, C->d

$$dG_S = dG_G$$

$$dG_i = V_i dP - S_i dT$$

$$rac{dP}{dT} = rac{S_S - S_G}{V_S - V_G} = rac{\Delta S}{\Delta V}$$
 $= rac{L}{T\Delta T}$ latent heat

action in the derivatives

Crucial: the concept of the symmetry of the phases

symmetry

due to Pierre Curie, actually:

If there is a symmetry change, a Phase Transition has occurred.

high degree of symmetry \Rightarrow lack of order

more symmetry operations \Rightarrow high entropy

related to higher temperatures

the more things are the same

but...plot differently:

2nd order

order parameter

Landau and Ginsberg invented a parameter

to measure the order in a system $\eta(T)$ the order parameter universalizing the study of phase transitions If $\eta = 0$, then the system is in an ordered phase If $\eta \neq 0$, then the system is in a disordered phase If $\eta(T) \rightarrow 0$ continuously, the P.T. is second order

here they are:

P

P

Te(K)

647

1044

Z

7

323

739

SYSTEM	ч	EXAMPLE	1
liquid-gas	R- 96	H2.0	
ferromagnet	М	Fe	
superfluid	4 ground state	⁴ He	
superconductivity	4 Cooper pairs	P6	
femalectrics	Ρ	truglycevine sulfate	
binary alloys	concentration	an-En	

near TC:

Landau postulated:

a function, L (the Landau Free Energy)...related to G

 $L(P,T,\eta) = L_0 + \beta(P,T)\eta^2 + \delta(P,T)\eta^4$

ground state? minimize L

 $L = L_0 + b(T - T_c) y^2 + \delta y^4$

two important things for $T < T_C$:

the ground state energy is lowered there are multiple ground state configurations

ferromagnetism

Symmetry said to be "spontaneously broken" Better: symmetry is "hidden"

beautiful example

here's another one: Euler

SYMMETRY IS LOST --- HIDDEN (same equation of motion)

-> ROD COULD HAVE PICKED AN INFINITE NUMBER OF DIRECTIONS TO BUILDGE... IN ACCORDANCE WITH ORIGINAL SYMMETRY

... just like ferromagnet

CMP theorists were playing

with these ideas...exploring broken symmetries

Steven Weinberg got a whiff of this...

but, he failed to apply it correctly

Because of the dreaded Goldstone Boson.

Goldstone Theorem

A system which has a spontaneously broken symmetry must have massless, Bose-like excitations in its spectrum.

There are no spinless, massless particles. So, Weinberg's initial attempts failed.

Works great in CMP!

spin waves

Trony where a cart

long wavelength, macroscopic, quantizable, excitations

with an energy dispersion:

$$\epsilon = \hbar^2 S \sum_{\vec{a}} (1 - \cos(\vec{q} \cdot \vec{a}))$$

as $q \rightarrow 0$, the energy goes to 0
 $\epsilon = \sqrt{q^2 c^2 + m^2 c^4}$ bingo: massless

But...

The Hamiltonian - and the ground state - still respect the original symmetry.

If you lived inside of the magnet,

how would you ever discover that the symmetry of the Hamiltonian is SO(3)?

That's our situation.

proof of the Goldstone Theorem

not here...in the handout

But, the consequences are the foll

But: what's the "ground state" of o quantum field?

The vacuum.

It's typically simple: it carries t dimensional representation of a

groups.

response of the vacuum to U:

Two ways:

the normal way:

U(Q)|0>=|0>

$$U(Q) = e^{-iQ\theta} \quad \Longrightarrow \quad Q|0 >= 0$$

 $Q|0>\neq 0$

Remember:

Relativistic quantum fields are operators:

they satisfy an algebra:

 $[Q,\phi(x)] = \phi'(x) \neq 0$

take the "vacuum expectation value"...aka "vev"

 $< 0|[Q,\phi(x)]|0> = < 0|\phi'(x)|0> \neq 0$

which says:

the field ϕ in the vacuum is non-vanishing!

Observation of such a thing is a trigger for the Goldstone Theorem

Dilute Bose Gas

remember your Stat Mech?

remember the occupation number for bosons? you treat the ground state differently

$$n_{i} = \frac{g_{i}}{e^{(\epsilon_{i} - \mu)/kT} - 1}$$
Bose-Einstein
Condensate

$$n_{0} = N \left[1 - \left(\frac{T}{T_{C}}\right)^{3/2}\right]$$
Bose-Einstein
Condensate

$$n_{0}$$

$$T_{C}$$

$$T_{C}$$

$$T_{C}$$

problem for a field theory

condensing into the ground state was a headscratcher

in field theory-relativistic or non-relativistic-

need to build a particle spectrum from an empty vacuum

 $a^{\dagger}|0\rangle = |1\rangle \implies a|0\rangle = 0$

But, this Bose-Einstein Condensate is a full vacuum!

Bogoliubov trick

the way out.

$$H = \left[\int_{X}^{3} \Psi^{4}(x) \left[-\frac{\pi^{2}}{2m} \nabla^{2} \right] \Psi(x) \right] \qquad \text{K.E. term} \\ + \left[\int_{X}^{3} \int_{X}^{3} \int_{Y}^{4} \Psi^{4}(x) \Psi^{4}(x') \nabla(x, x') \Psi(x) \Psi(x') \right] \qquad \text{P.E. term} \Psi^{4} \\ + \int_{Y}^{3} \int_{X}^{3} \chi \Psi^{4}(x) \Psi(x) \qquad \text{C.F. term} \Psi^{2}.$$

μ is zero in the condensate

the number operator: $N = a^{\dagger}a \sim \bar{\psi}\psi$

$$\begin{split} a|0>_N = N^{1/2}|0>_{N-1} \sim N^{1/2}|0>_N \\ & \text{for large N} \\ & \text{like: } \sim <0|\psi|0>\neq 0 \end{split}$$

some broken symmetry

Number operator symmetry is broken

$$e^{i\lambda N} \qquad U|0>_N \neq |0>_N$$
$$N|0>_N \neq 0$$

shift it away

 a^{\dagger} and a almost "c-numbers" $a^{\dagger} \approx a \approx \sqrt{n_0}$ $\psi(x) =$ vacuum value $+ \chi(x)$ $< 0|\chi|0>= 0$ $\chi(x) \sim \sum_{\vec{k}\neq 0} a_{\vec{k}} e^{i\vec{k}\cdot\vec{x}}$ substitute into H

yadda yadda yadda

a mess...diagonalize with a canonical transformation:

 $\alpha_{h} \equiv u_{h}a_{h}^{t} + v_{h}a_{-h}^{t}$ $\alpha_{-h} \equiv u_{-h}a_{-h} + v_{-h}a_{h}^{t}$ $\alpha_{-h} \equiv u_{-h}a_{-h} + v_{-h}a_{h}^{t}$ $\alpha_{-h} \equiv u_{-h}a_{-h} + v_{-h}a_{h}^{t}$ $\alpha_{-h} \equiv u_{-h}a_{-h} + v_{-h}a_{h}^{t}$

the create and annihilate a new particle spectrum

a quasi particle spectrum

$$H = N^2 - \frac{1}{2} \sum_{h \neq 0} (w_h - \varepsilon_h) + \frac{1}{2} \sum_{h \neq 0} \varepsilon_h \alpha_h^{\dagger} \alpha_h$$

$$\Sigma_{k} = \sqrt{\frac{\pi^{4}k^{4}}{4m^{2}}} + \frac{4\pi^{2}h^{2}f(h)}{2m}$$

phonons

The Goldstone Boson of the Bose Gas

- superfulid phase, rotons. ٤

multiple things going on

build a toy theory

A relativistic quantum field theory

Jeffery Goldstone, "Field Theories with Superconductor Solutions" 1960

phase transition, ala' L&G

before the phase transition:

induce the phase transition as Landau-Ginsburg

=> <01010>=0

 $a \rightarrow -|a|$ $V(\phi) = -a\mu^{2}\phi^{2} + \frac{\lambda}{4}\phi^{4}$

and minimize to find GS:

pick one of the vacua...

shift & build a particle spectrum

 $\frac{|V(\phi)|}{|\psi|} = \psi$ $\frac{|V(\phi)|}{|\psi|} = \psi$ $VACUUM^{*} occurs AT FINITE <math>\phi \Rightarrow (c)(\phi|_{0}) \neq 0$ $= \pm \psi$ $\frac{|V(\phi)|}{|\psi|} = (c)(\phi|_{0}) + \chi(x)$ $= \psi + \chi(x)$

and substitute it back:

 $\mathcal{L}(\mathbf{k}) = \frac{1}{2} \partial_{\mathbf{\mu}} \mathcal{K} \partial^{\mathbf{n}} \mathcal{K} - |a| \, \mu^2 \, \mathcal{K}^2 + quartic & cubic self interactions$

the correct form for a <u>massive</u> boson!

Was the Goldstone Theorem violated?

no: this was a discrete symmetry Goldstone Theorem holds for continuous symmetries

a 2-component field

• FOR A CONTINUOUS SYMMETRY.. NEED MORE THAN 1. COMPONENT OBJECT: $\varphi_1 \neq \varphi_2 \quad \text{or} \quad \varphi \neq \varphi^{\dagger} = \frac{\varphi_1 \pm i\varphi_1}{\sqrt{2}}$ $\chi(\varphi) = \frac{1}{2} \partial_{\mu} \varphi^{\dagger} \partial^{\mu} \varphi - \frac{1}{2} a \varphi^{\dagger} \varphi - \frac{1}{4} \lambda (\varphi^{\dagger} \varphi)^2$ SYMMETRY: $\varphi \rightarrow \varphi' = e^{i\theta} \varphi$ (EAVES & ALCONE... $\alpha' \quad \left(\begin{array}{c} \varphi_1 \\ \varphi_2 \end{array} \right) \rightarrow \left(\begin{array}{c} \varphi_1 \\ \varphi_2 \end{array} \right)' = \left(\begin{array}{c} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array} \right) \left(\begin{array}{c} \varphi_1 \\ \varphi_2 \end{array} \right)$

... Global Uli) or 50(2), which are isomorphic.

 $\begin{aligned} \mathcal{L}(\varphi) &= \frac{1}{2} \partial_{\mu} \varphi_{1} \partial^{\mu} \varphi_{1} + \frac{1}{2} \partial_{\mu} \varphi_{2} \partial^{\mu} \varphi_{2} - \frac{\alpha \mu^{2}}{2} (\varphi_{1}^{2} + \varphi_{2}^{2}) - \frac{\lambda}{4} (\varphi_{1}^{2} + \varphi_{2}^{2})^{2} \\ & \sqrt{(\varphi, \varphi_{2})} = \alpha \mu^{2} (\varphi_{1}^{2} + \varphi_{2}^{2}) + \frac{\lambda}{4} (\varphi_{1}^{2} + \varphi_{2}^{2})^{2} \\ & \text{MINIMIZATION LEADS TO :} \end{aligned}$

do the L-G thing

$$a \rightarrow -a$$
 in: $\sqrt{(q,q_2)} = a\mu^2 (q_1^2 + q_2^2) + \frac{\lambda}{4} (q_1^2 + q_2^2)$

MINIMIZATION LEADS TO: $q_1^2 + q_2^2 = \frac{|a\mu^2|}{\lambda}$

gotta pick a direction

to break the symmetry...and build a Bogoliubov-like spectrum:

```
CHOOSE TO BREAK SYMMETRY BY &= 0
```

 $\begin{array}{l} \langle 0|q_1|0\rangle = \upsilon \\ \langle 0|q_2|0\rangle = 0 \end{array} \right\rangle \quad A \quad q_2 = 0 \quad \text{suce} \\ \langle 0|(q_1)|0\rangle = 0 \quad \langle 0|(q_1)|0\rangle = 0 \\ \langle 0|(q_2)|0\rangle = 0 \quad \langle 0|(q_1)|0\rangle = 0 \end{array}$

SHIFT FIELDS USING COMPLEX REPRESENTATION ...

 $\varphi = \upsilon + \sigma(x) + i\eta(x)$ TO QUASI PARTICLE SET. $\varphi_1 \quad i\varphi_2 \quad \sigma(x) \neq \eta(x).$

 $\begin{aligned} \vec{z} &= \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta + \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - \alpha |\mu^{2}| \sigma^{2} + \text{ cubic f quartic interactions} \\ & no \quad \eta^{2} \text{ term} \\ \eta_{2} \text{ cost its MASS... } \eta \text{ is MASSCESS (THE GOLDSTENSE BOSON)} \\ & \sigma \text{ is MASSIVE}, \quad m_{s} = \sqrt{2\alpha} \mu. \end{aligned}$

single loophole

Remember Local U(1) symmetries?

the Goldstone theorem: <u>Global</u> symmetries

Remember the routine:

force a phase transformation

FORCE
$$a \rightarrow -|a|$$
 AND SMFT FIGLDS...
 $\langle 0|q_1|0\rangle = v \equiv a\mu^2$ $\langle 0|q_2|0\rangle = 0$
 $q = v + v + i q$ AGAIN

and substitute back...

magic

$$\chi = \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma + \frac{1}{2} \partial_{\mu} \eta \partial^{\mu} \eta - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

$$- \frac{1}{2} 2g v \partial_{\mu} \eta a^{\mu} + g^{2} v \sigma a^{2} + \frac{1}{2} g^{2} v^{2} a^{2} - a \mu^{2} \sigma + cubic \leq quart.$$
interactions

LOOK AT TERMS

.

$$\frac{1}{2} \left(\partial_{\mu} \eta \partial^{\mu} \eta - 2gv \partial_{\mu} \eta a^{\mu} + g^{2}v^{2}a^{2} \right)$$

$$= \frac{1}{2} \left(gva_{\mu} - \partial_{\mu} \eta \right)^{2} = \frac{1}{2} g^{2}v^{2} \left(a_{\mu} - \frac{1}{gv} \partial_{\mu} \eta \right)^{2}$$

(RE) DEFINE
$$x_{\mu} \equiv a_{\mu} - \frac{1}{3} \partial_{\mu} \gamma$$
 (koks like gauge transformation
 $= \text{desuit affect } F'_{5}$)
 $>0, \quad \overline{\Psi}_{\mu\nu} \equiv \partial_{\mu} x_{\nu} - \partial_{\nu} x_{\mu} \qquad - \text{or } \Psi'_{5} \dots$

v

ta-da

The η has disappeared!

no massless bosons

The σ is still there

but has gained a mass!

 $m_{\sigma} = \sqrt{2a\mu^2}$

The a_{μ} has disappeared and replaced by α_{μ} $=\frac{gv}{\sqrt{2}}$

 m_{lpha}

but has gained a mass!

Higgs Mechanism

the original, massless a_{μ}

had 2 dof

the original η

together, making 3 dof!

existed as a gradient, $\partial_{\mu}\eta(x)$

The Goldstone boson was "eaten" by the (gradient of the) spin 1 massless field

to become a spin 1 massive field.

Discovered by:

Anderson, Nambu, Englert, Brout, Gilbert, Guralnik, Higgs, Hagen, and Kibble around 1964 so naturally called the Higgs Mechanism

that's superconductivity

Start out with:

2 component, degenerative Boson pair massless spin 1 vector Boson so, a local U(1) symmetry is assured-Gauge invariant

Do the Landau-Ginsburg mechanical inducement of a phase transition

End up with:

1 massive spin 0 Boson Higgs Boson

1 massive spin 1 Boson Makes you think of the W

"superconductivity," you say?

In a superconductor, the order parameter:

Cooper Pairs—a Bose-like excitation

A breaking of charge invariance

What happens when a magnetic field impinges on a superconductor?

It's quenched within a skin-depth: Meisner Effect.

bingo

When an electromagnetic field encounters a superconductor

it gains a mass.

That's where we live: inside a Universal Superconductor.

where some "photons" are massive.

the chain of events:

$SU(2) \otimes U(1)$

Weinberg, "A Model of Leptons" 1967

less than 3 pages.

VOLUME 19, NUMBER 21

PHYSICAL REVIEW LETTERS

 11 In obtaining the expression (11) the mass difference between the charged and neutral has been ignored. ¹²M. Ademollo and R. Gatto, Nuovo Cimento 44A, 282 (1966); see also J. Pasupathy and R. E. Marshak, Phys. Rev. Letters 17, 888 (1966).

¹³The predicted ratio [eq. (12)] from the current alge-

true also in the other case of the ratio $\Gamma(\eta \rightarrow \pi^+ \pi^- \gamma)/$ $\Gamma(\gamma \gamma)$ calculated in Refs. 12 and 14. ¹⁴L. M. Brown and P. Singer, Phys. Rev. Letters <u>8</u>, 460 (1962).

and on a right-handed singlet

A MODEL OF LEPTONS*

Steven Weinberg† Laboratory for Nuclear Science and Physi Massachusetts Institute of Technology, Cambrid (Received 17 October 1967)

Leptons interact only with photons, and with the intermediate bosons that presumably mediate weak interactions. What could be more natural than to unite¹ these spin-one bosons into a multiplet of gauge fields? Standing in the way of this synthesis are the obvious differences in the masses of the photon and intermediate meson, and in their couplings. We might hope to understand these differences by imagining that the symmetries relating the weak and electromagnetic interactions are exact symmetries of the Lagrangian but are broken by the vacuum. However, this raises the specter of unwanted massless Goldstone bosons.² This note will describe a model in which the symmetry between the electromagnetic and

ne ' or ons e ave int o tin v boson fields as gaug i fields.3 The model may be renormalizable.

wer interactions is spontaneously bre

We will restrict our attention to symmetry groups that connect the observed electron-type leptons only with each other, i.e., not with muon-type leptons or other unobserved leptons or hadrons. The symmetries then act on a lefthanded doublet

 $L \equiv \left[\frac{1}{2}(1+\gamma_{\rm E})\right]$ (1)

bra is sl tha that (0.23%) obtained from dei of Ref. 2. This seems to be

20 NOVEMBER 1967

(2)

 $R \equiv \left[\frac{1}{2}(1-\gamma_{\rm E})\right]e.$

The largest group that leaves invariant the kinematic terms $-\overline{L}\gamma^{\mu}\partial_{\mu}L-\overline{R}\gamma^{\mu}\partial_{\mu}R$ of the Lagrangian consists of the electronic isospin \vec{T} acting on L, plus the numbers N_L , N_R of left- and right-handed electron-type leptons. As far as we know, two of these symmetries are entirely unbroken: the charge $Q = T_3 - N_R - \frac{1}{2}N_L$, and the electron number $N = N_R + N_I$. But the gauge field corresponding to an unbroken symmetry will have zero mass,⁴ and there is no massless particle coupled to N_{2}^{5} so we must form our gauge group out of the electronic iso- $\mathbf{T} \text{ are the electron } \mathbf{c} \text{ h per hange } Y \equiv N_R$ herewre, we fall cons rue our Lagrangian out of L and R, plus gauge fields \vec{A}_{μ} and B_{ii} coupled to \vec{T} and Y, plus a spin-zero dou-

(3)

whose vacuum expectation value will break \vec{T} and Y and give the electron its mass. The only renormalizable Lagrangian which is invariant under \vec{T} and Y gauge transformations is

 $\varphi = \begin{pmatrix} \varphi^0 \\ \varphi^{-} \end{pmatrix}$

$$= -\frac{1}{4} (\partial_{\mu} \vec{A}_{\nu} - \partial_{\nu} \vec{A}_{\mu} + g \vec{A}_{\mu} \times \vec{A}_{\nu})^{2} - \frac{1}{4} (\partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu})^{2} - \overline{R} \gamma^{\mu} (\partial_{\mu} - ig' B_{\mu}) R - L \gamma^{\mu} (\partial_{\mu} ig \vec{t} \cdot \vec{A}_{\mu} - i\frac{1}{2}g' B_{\mu}) L - \frac{1}{2} |\partial_{\mu} \varphi - ig \vec{A}_{\mu} \cdot \vec{t} \varphi + i\frac{1}{2}g' B_{\mu} \varphi |^{2} - G_{e} (\overline{L} \varphi R + \overline{R} \varphi^{\dagger} L) - M_{1}^{2} \varphi^{\dagger} \varphi + h(\varphi^{\dagger} \varphi)^{2}.$$
(4)

We have chosen the phase of the R field to make G_e real, and can also adjust the phase of the L and Q fields to make the vacuum expectation value $\lambda \equiv \langle \varphi^0 \rangle$ real. The "physical" φ fields are then φ^-

VOLUME 19, NUMBER 21

in the following.

and, assuming

rons and

The condition that φ_1 have zero vacuum expec-

ory tells us that $\lambda^2 \cong M_1^2/2h$, and therefore the

ical coupling. The Lagrangian is gauge invariant, so we can perform a combined isospin

and hypercharge gauge transformation which

ing anything else. We will see that G_{ρ} is very

The effect of all this is just to replace φ ev-

so the φ_1 couplings will also be disregarded

erywhere by its vacuum expectation value

the rest of the Lagrangian becomes

 $-\frac{1}{8}\lambda^2 g^2 [(A_{\mu}^{1})^2 + (A_{\mu}^{2})^2]$

 $\langle \varphi \rangle = \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

The first four terms in £ remain intact, while

tation value to all orders of perturbation the-

and

PHYSICAL REVIEW LETTERS

20 NOVEMBER 1967

so A_{μ} is to be identified as the photon field. The interaction between leptons and spin-1 mesons is

$$\frac{ig}{\sqrt{2}} \overline{e} \gamma^{\mu} (1+\gamma_5) \nu W_{\mu} + \text{H.c.} + \frac{igg'}{(g^2+g'^2)^{1/2}} \overline{e} \gamma^{\mu} e A_{\mu} + \frac{i(g^2+g'^2)^{1/2}}{4} \left[\left(\frac{3g'^2-g^2}{g'^2+g'^2} \right) \overline{e} \gamma^{\mu} e - \overline{e} \gamma^{\mu} \gamma_5 e + \overline{\nu} \gamma^{\mu} (1+\gamma_5) \nu \right] Z_{\mu}.$$

 $-\frac{1}{8}\lambda^2 (gA_{\mu}{}^3 + g'B_{\mu})^2 - \lambda G_e \overline{e}e.$ (7)

We see that the rationalized electric charge is

$$e = gg'/(g^2 + g'^2)^{1/2}$$

that
$$W_{\mu}$$
 couples as usual to had-

(15)

 $G_{\rm W}/\sqrt{2} = g^2/8M_{\rm W}^2 = 1/2\lambda^2$. Note that then the $e - \varphi$ coupling constant is

$$G_e = M_e / \lambda = 2^{1/4} M_e G_W^{1/2} = 2.07 \times 10^{-6}$$

The coupling of φ_1 to muons is stronger by a factor M_{μ}/M_e , but still very weak. Note also that (14) gives g and g' larger than e, so (16) tells us that $M_W > 40$ BeV, while (12) gives $M_Z > M_W$ and $M_Z > 80$ BeV.

The only unequivocal new predictions made

by this model have to do with the couplings of the neutral intermediate meson Z_{μ} . If Z_{μ} does not couple to hadrons then the best place to look for effects of Z_{μ} is in electron-neutron scattering. Applying a Fierz transformation to the W-exchange terms, the total effective $e - \nu$ interaction is

$$\frac{G_W}{\sqrt{2}}\overline{\nu}\gamma_\mu(1+\gamma_5)\nu\left\{\frac{(3g^2-g'^2)}{2(g^2+g'^2)}\overline{e}\gamma^\mu e+\frac{3}{2}\overline{e}\gamma^\mu\gamma_5 e\right\}.$$

If $g \gg e$ then $g \gg g'$, and this is just the usual e-v scattering matrix element times an extra factor $\frac{3}{2}$. If $g \simeq e$ then $g \ll g'$, and the vector interaction is multiplied by a factor $-\frac{1}{2}$ rather than $\frac{3}{2}$. Of course our model has too many arbitrary features for these predictions to be

£

(14)

really...2 pages.

VOLUME 19, NUMBER 21

PHYSICAL REVIEW LETTERS

20 November 1967

taken very seriously, but it is worth keeping in mind that the standard calculation⁸ of the electron-neutrino cross section may well be wrong.

Is this model renormalizable? We usually do not expect non-Abelian gauge theories to be renormalizable if the vector-meson mass is not zero, but our Z_{μ} and W_{μ} mesons get their mass from the spontaneous breaking of the symmetry, not from a mass term put in at the beginning. Indeed, the model Lagrangian we start from is probably renormalizable, so the question is whether this renormalizablity is lost in the reordering of the perturbation theory implied by our redefinition of the fields. And if this model is renormalizable, then what happens when we extend it to include the couplings of \vec{A}_{μ} and B_{μ} to the hadrons?

I am grateful to the Physics Department of MIT for their hospitality, and to K. A. Johnson for a valuable discussion.

*This work is supported in part through funds provided by the U. S. Atomic Energy Commission under Contract No. AT(30-1)2098).

†On leave from the University of California, Berkeley, California.

¹The history of attempts to unify weak and electromagnetic interactions is very long, and will not be reviewed here. Possibly the earliest reference is E. Fermi, Z. Physik <u>88</u>, 161 (1934). A model similar to ours was discussed by S. Glashow, Nucl. Phys. <u>22</u>, 579 (1961); the chief difference is that Glashow introduces symmetry-breaking terms into the Lagrangian, and therefore gets less definite predictions.

²J. Goldstone, Nuovo Cimento <u>19</u>, 154 (1961); J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. <u>127</u>, 965 (1962).

³P. W. Higgs, Phys. Letters <u>12</u>, 132 (1964), Phys. Rev. Letters <u>13</u>, 508 (1964), and Phys. Rev. <u>145</u>, 1156 (1966); F. Englert and R. Brout, Phys. Rev. Letters <u>13</u>, 321 (1964); G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Letters <u>13</u>, 585 (1964).

⁴See particularly T. W. B. Kibble, Phys. Rev. <u>155</u>, 1554 (1967). A similar phenomenon occurs in the strong interactions; the ρ -meson mass in zeroth-order perturbation theory is just the bare mass, while the A_1 meson picks up an extra contribution from the spontaneous breaking of chiral symmetry. See S. Weinberg, Phys. Rev. Letters <u>18</u>, 507 (1967), especially footnote 7; J. Schwinger, Phys. Letters <u>24B</u>, 473 (1967); S. Glashow, H. Schnitzer, and S. Weinberg, Phys. Rev. Letters <u>19</u>, 139 (1967), Eq. (13) <u>et seq.</u>

⁵T. D. Lee and C. N. Yang, Phys. Rev. <u>98</u>, 101 (1955). ⁶This is the same sort of transformation as that which eliminates the nonderivative $\bar{\pi}$ couplings in the σ model; see S. Weinberg, Phys. Rev. Letters <u>18</u>, 188 (1967). The $\bar{\pi}$ reappears with derivative coupling because the strong-interaction Lagrangian is not invariant under chiral gauge transformation.

⁷For a similar argument applied to the σ meson, see Weinberg. Ref. 6.

⁸R. P. Feynman and M. Gell-Mann, Phys. Rev. <u>109</u>, 193 (1957).

SPECTRAL-FUNCTION SUM RULES, $\omega - \varphi$ MIXING, AND LEPTON-PAIR DECAYS OF VECTOR MESONS*

R. J. Oakes†

Brookhaven National Laboratory, Upton, New York

and

J. J. Sakurai

The Enrico Fermi Institute for Nuclear Studies and the Department of Physics, The University of Chicago, Chicago, Illinois (Received 18 October 1967)

Within the framework of vector-meson dominance, the current-mixing model is shown to be the only theory of $\omega - \varphi$ mixing consistent with Weinberg's first sum rule as applied to the vector-current spectral functions. Relations among the leptonic decay rates of ρ^0 , ω , and φ are derived, and other related processes are discussed.

We begin by considering Weinberg's first sum rule¹ extended to the (1+8) vector currents of the eightfold way²:

 $\int dm^2 [m^{-2}\rho_{\alpha\beta}^{(1)}(m^2) + \rho_{\alpha\beta}^{(0)}(m^2)] = S\delta_{\alpha\beta} + S'\delta_{\alpha0}\delta_{\beta0},$

that's it.

Citations in the next 4 years?

something like 3...all by Weinberg

Then, all hell broke loose in 1979

definitive predictions:

The W exists and the Z exists

 $\Lambda \Lambda$

The Z would couple everywhere that γ couples like atoms \984 like interfering with electron scattering ~\990? like "weak neutral currents" \979

The mass of the Z is related to the mass of the W

$$\cos\theta_W = \frac{M_W}{M_Z} \quad [983]$$
$$\begin{pmatrix} \gamma \\ Z^0 \end{pmatrix} = \begin{pmatrix} \cos\theta_W & \sin\theta_W \\ -\sin\theta_W & \cos\theta_W \end{pmatrix} \begin{pmatrix} B^0 \\ W^0 \end{bmatrix}$$

The Standard Model is the most precise theory in the history of physics

pretty damn good.

Quantity	Value	Standard Model	Pull
$m_t \; [\text{GeV}]$	$172.7 \pm 2.9 \pm 0.6$	172.7 ± 2.8	0.0
M_W [GeV]	80.450 ± 0.058	80.376 ± 0.017	1.3
,, ()	80.392 ± 0.039		0.4
M_Z [GeV]	91.1876 ± 0.0021	91.1874 ± 0.0021	0.1
Γ_Z [GeV]	2.4952 ± 0.0023	2.4968 ± 0.0011	-0.7
$\Gamma(had)$ [GeV]	1.7444 ± 0.0020	1.7434 ± 0.0010	
$\Gamma(inv)$ [MeV]	499.0 ± 1.5	501.65 ± 0.11	
$\Gamma(\ell^+\ell^-)$ [MeV]	83.984 ± 0.086	83.996 ± 0.021	
$\sigma_{\rm had}$ [nb]	41.541 ± 0.037	41.467 ± 0.009	2.0
R_e	20.804 ± 0.050	20.756 ± 0.011	1.0
R_{μ}	20.785 ± 0.033	20.756 ± 0.011	0.9
$R_{ au}$	20.764 ± 0.045	20.801 ± 0.011	-0.8
R_b	0.21629 ± 0.00066	0.21578 ± 0.00010	0.8
R_c	0.1721 ± 0.0030	0.17230 ± 0.00004	-0.1
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01622 ± 0.00025	-0.7
$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013		0.5
$A_{FB}^{(0, au)}$	0.0188 ± 0.0017		1.5
$A_{FB}^{(0,b)}$	0.0992 ± 0.0016	0.1031 ± 0.0008	-2.4
$A_{FB}^{(0,c)}$	0.0707 ± 0.0035	0.0737 ± 0.0006	-0.8
$A_{FB}^{(0,s)}$	0.0976 ± 0.0114	0.1032 ± 0.0008	-0.5
$\bar{s}_{\ell}^{2}(A_{FB}^{(0,q)})$	0.2324 ± 0.0012	0.23152 ± 0.00014	0.7
	0.2238 ± 0.0050		-1.5
A_e	0.15138 ± 0.00216	0.1471 ± 0.0011	2.0
	0.1544 ± 0.0060		1.2
4	0.1498 ± 0.0049		0.6
A_{μ}	0.142 ± 0.015		-0.3
A_{τ}	0.136 ± 0.015		-0.7
4	0.1439 ± 0.0043 0.923 ± 0.020	0.9347 ± 0.0001	$-0.7 \\ -0.6$
A_b A_c	0.923 ± 0.020 0.670 ± 0.027	0.9347 ± 0.0001 0.6678 ± 0.0005	-0.6 0.1
A_c A_s	0.870 ± 0.027 0.895 ± 0.091	0.0078 ± 0.0003 0.9356 ± 0.0001	-0.1
218 a ²	0.30005 ± 0.00137	0.30378 ± 0.0001	-0.4 -2.7
g_L^2 g_R^2	0.30005 ± 0.00137 0.03076 ± 0.00110	0.30378 ± 0.00021 0.03006 ± 0.00003	-2.7 0.6
g_R	-0.040 ± 0.00110	-0.0396 ± 0.0003	0.0
$_{a\nu e}^{9V}$	-0.507 ± 0.013 -0.507 ± 0.014	-0.5064 ± 0.0001	0.0
${}^{g_A}_{APV}$	-1.31 ± 0.17	-1.53 ± 0.02	1.3
$Q_W(Cs)$	-72.62 ± 0.46	-73.17 ± 0.03	1.2
$\hat{Q}_W(\text{Tl})$	-116.6 ± 3.7	-116.78 ± 0.05	0.1
$\Gamma(b \rightarrow s\gamma)$	$3.35^{+0.50}_{-0.44} \times 10^{-3}$	$(3.22 \pm 0.09) \times 10^{-3}$	0.3
$\Gamma(b \to X e u)$ $\frac{1}{2}(g_{\mu} - 2 - \frac{\alpha}{\pi})$	4511.07 ± 0.82	4509.82 ± 0.10	1.5
$\tau_{\tau} [fs] = \pi^{\gamma}$	290.89 ± 0.58^{-11}	$1:05 291.87 \pm 1.76$	-0.4
Tr [5]	29039 ± 0.58	291.87 ± 1.76	-0.4
$\frac{1}{2}(g_{0i}-2-\frac{\alpha}{\pi})$	4511.07 ± 0.82	4509.82 ± 0.10	1.5

The Review of Particle Physics W.-M. Yao et al., Journal of Physics, G 33, 1 (2006)

Newtonian gravity

The Standard Model is also a model of the Universe

- *a*⁰ 0**MM**
- *B*⁰ 0****
- *B*⁺ + WWW
- *B* - WWW

$$\phi \begin{pmatrix} + - - - - - \\ 0 - - - - - \end{pmatrix}$$

$$\phi^* \begin{pmatrix} - - - - - - \\ 0 - - - - - \end{pmatrix}$$

t = the beginning 0 s

$t = 10^{-12} s$ $t = 10^{+18} s$

This...is: The "Higgs Mechanism"

The remaining primordial scalar is the Higgs Field.

The Higgs Boson creates mass mass may not be an inherent property... but an *acquired* one

about nothing

the action

in the

Vacuum

a tiny ball of spa 13.7 Bill

ime, and energy ears ago

Nature is clumpy

Higgs Boson

(after David Miller)

By constraining SM measurements:

 ${M_H < 182 \text{ GeV/c}^2; > 114 \text{ GeV/c}^2}$ and: $M_H = 76 + 36 - 24 \text{ GeV/c}^2$

SM is a renormalizable theory

with issues... Higgs loops. and Gravity.

