hi

Lecture 18, 16.03.2017

Einstein's Theory of General Relativity, 2

housekeeping

Question about anything?

I'll make a movie for you:

Marie Curie movie anyone?

beginning to look like March 29

Book Review 1 is due Saturday.

FakeFacebook is due April Fools Day. tee hee

Blog read-reflect project will start soon.

Sheesh.

Chip Brock created a poll. March 13 at 11:02am

The Curie movie. This is stupid...sorry. I've now pinned down two availabilities through the week of March 27. This will be the last p promise. Okay, I lied. There will be a pizza poll, but that's differe

Vednesday, March 29 at 6:30pm	+12
hursday, March 15 at 7pm	+4
uesday, March 28 at 7pm	+3
londay, March 20 at 7pm	+2
hursday, March 30 at 6:30pm	+2
Vednesday, March 22 at 6:30pm	+1
hursday, March 23 at 6:30pm	+1
Aonday, March 27 at 7pm	+1
dd an option	

Honors Project

has begun. First milestone was last Friday.

Read the Second of two sets of instructions:

MinervaInstructions2 2017.pdf in

www.pa.msu.edu/~brock/file sharing/QSandBB/2017homework/honors project 2017/

MasteringAstronomy

free and use of the textbook:

- The Essential Cosmic Perspective, Bennett, Megan Donahue, Schneider, Mark Voit
 - http://www.pearsonmylabandmastering.com/ northamerica/masteringastronomy/
 - Course ID is ISP220SP17
 - "code" is WSSPCT-SNELL-NAMEN-WEIGH-METIS-NJORD

free fall is special

no gravity no gravity

what we've found:

the path of light is the physical manifestation of

the shortest distance between two points then:

its curved path under gravity is the shortest distance

which is a geometrical concept

space (spacetime) is altered by gravity

space (spacetime) is altered by mass

gravity

is the shape of spacetime

not a force.

8

General Relativity

Einstein's GR equation

complicated mathematics geometry of spacetime

$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi}{c^4} T_{\mu\nu}$

we'll call it: "G = T "

 \leftrightarrow

mass-energy, pressure, & momentum

9

3d 'embedding diagram'

take this surface....

and try to think of it in a volume...

imagine density in air...and you're in an airplane and hit an "air pocket"

what about light?

suppose the question is not:

"What's the escape velocity from a sphere of mass M?"

BUT

"What's the radius of a mass M for which the escape velocity is = *c*?"

 $v_{\rm esc} = \sqrt{\frac{2GM_E}{R_E}} \quad \longrightarrow \quad c = \sqrt{\frac{2GM}{R_S}}$

R_S called the Schwarzchild Radius

$$R_S = \frac{2GM}{c^2}$$

It seemed to be a magic radius...

11

shine a light

but not in the path of an airplane.

$R_E \& M_E$

$0.1 \mathrm{x} \mathrm{R_E} \& \mathrm{M_E}$

$0.00000000833 \mathrm{x} \mathrm{R_{E}} \& \mathrm{M_{E}}$

if the mass of the earth were within Icm, light cannot escape

silly, right?

who could ever imagine such a thing

1939: Robert Oppenheimer & Hartland Snyder did.

5¢ worth of stellar physics no charge

Hertzsprung-Russell Diagram...aka H-R Diagram

worth **5¢** of stellar physics

For a sun-like star:

1. H gas begins to heat...very large

2.heat radiates away and coallescence begins

3. at 10M degrees, fusion begins

4. pressure stabilizes

Hertzsprung-Russell Diagram...aka H-R Diagram

stars radiate energy – that's their job!

being stable is their challenge...

a balancing act

inward pressure from gravity

VS

outward pressure from radiation

A star's fate is determined by how massive it is.

gravity pulls core/atmosphere: in Radiation pressure from nuclear fusion in core: out

H begins to "burn" to He

pp cycle

pp cycle

Helium-capture reactions

Other reactions

Copyright @ 2004 Pearson Education, publishing as Addison Wesley.

a balancing act

inward pressure from gravity

VS

outward pressure from radiation

WINS

STOPS

and then a special effect takes over:

It stops abruptly in seconds

Explosively.

gravity pulls core/atmosphere: in

Radiation pressure from nuclear fusion in core: out

$e + p \rightarrow n + \nu_e$ everywhere...

the star shrinks dramatically

neutrons cannot all be on top of one-another

supernova!

Tycho's

SN 1993J M81

Crab Nebula...supernova remnant from 1054 AD

aftermath of a SN

mass-ejection and a neutron star

"pulsar"...a rapidly rotating neutron star: few milliseconds to seconds in rotation rate

The source of all elements > Fe. We are made of star-stuff

30 CLASH SN Candidates in 20 Clusters so far, 15 shown here

SN "Augustus"

(Of the 30, ~30% are Type la)

SN "Galba"

Discovery

One of Professor Donahue's Hubble project: SN

SN "Titus"

SN "Claudius"

N "Nero

Reference

"Hadrian'

SN "Antonius Pius"

"Marcus Aurelius

SN "Crimson'

SN "Burgundy'

what if $M > 3-15 \times M_{sun}$?

Nature turns viscous

Stelar BLACK HOLE

29

remember the interval?

I wrote the interval this way: $\Delta s^2 = (c\Delta t)^2 - (\Delta x)^2$

r: radius of spherical region, not x and y anymore

Now that we're talking about bending space and time and spacetime...we'll need a more general version

These coefficients will characterize the shape of the interval - the "Metric"

For curved spacetime...the "g's" will not be +1 and -1...

Flat, "Minkowski Metric" $g_{00} = 1 \, g_1$

"regular" Special Relativity

write it out...blackhole arithmetic

the interval for spacetime regions outside of a spherical mass

ala' Mr Schwarzchild

$$\Delta s^{2} = \frac{(1 - \frac{R_{S}}{r})}{r}c^{2}\Delta t^{2} + (\frac{-1}{1 - R_{S}})c^{2}\Delta t^{2} + (\frac{-1}{1 - R_{S}$$

$$\Delta s^2 = g_{00} (c\Delta t)^2 + g_{11} (\Delta r)^2$$

arithmetic outside of a

using the "interval"

The GR analog involves constants, "g" the metric. $\Delta s^2 = (g_{00})c^2\Delta t^2 + (g_{11})\Delta r^2$

The Schwarzchild solution...is in part solving for the g's.

$$g_{00} = 1 - rac{R_S}{r}$$
 remembe $R_S << r \, v$
 $g_{11} = rac{-1}{1 - R_S/r}$ $g_{00} = 1, \ s$

What if all of the M is inside of R_S and $r = R_S$?

time appears to stop for an outside observer!

What if all of the M is inside of R_S and $r < R_S$?

$$\Delta s^2 = \left(1 - \frac{R_S}{r}\right)c^2 \Delta t^2 + \frac{1}{r}$$

- r, for most objects: what are g_{00} and g_{11} ?
- $q_{11} = -1$

very peculiar

Gravity wins. Nothing gets out, not even light:

BLACK

no light

the most extreme warping of spacetime in Nature

outside $\sim 3R_{\rm S}$ of

a black hole behaves like a normal object with Newtonianlike gravity

So, how are they found?

Because they're hungry.

the matter sucked in accelerates... and accelerating charges do what?

Radiate...X-Ray, radio frequencies typically

Three kinds:

- Stellar black holes 100's found with Hubble 1.
- **Supermassive black holes** seems that all galaxies 2. have one: billion's of stars' worth
- **miniature black holes**. complete speculation, a gleam 3. in some theorists' eyes

Galactic black holes:

Milky Way

4 x 10⁶ x M_{sun}

M84

300 x 10⁶ x M_{sun}

M87

3.5 x 10⁹ x M_{sun}

There are a handful of "classic tests"

of these ideas:

that space and time are warped by gravitation

accelerating charges

remember?

Well, mass can be thought of as the "charge" of gravitational fields.

wiggle a big mass..it will radiate "gravitational waves"

Disturbances in geometry of spacetime itself.

"Binary Pulsar period"

remarkable

test of General Relativity

Joseph H. Taylor Jr.

Russell A. Hulse

A binary star system...of neutron stars they are accelerating and so radiate gravitational waves

Emits very regular radio pulse every 59 ms: "pulsars" and its period is reduced by 67 ns each orbit

PSR1913+16 discovered 1974

Pulsars discovered earlier and awarded the 1974 Nobel Prize to Martin Ryle and Antony Hewish (and not Jocelyn Bell...) in 1968

LIGO

Laser Interferometer Gravitational-Wave Observatory

intergalactic, colliding binary, neutron stars, gamma ray bursts, black holes, colliding galaxies,

looking for shrinkage of one arm when gravitational wave passes by

need precision smaller than a proton radius

Livingston, LA

Hanford, WA

laboratory:

LIGO

location: established: notable directors: Barry Barish, now Jay Marx

Lawrence, LA & Hanford, WA 1999

type of lab:

gravitational waves

Laser interferometer for measuring

let Brian Greene explain

Brian was on campus last spring...did you go?

MSU Science Festival: http://sciencefestival.msu.edu

id you go? stival.msu.edu