ISP220 Symbols and Equations

Version 1.2

February 25, 2012

A running list of topics included:

- Mechanics
- Electrodynamics
- Special Relativity
- General Relativity and Cosmology (not complete)

1 Mechanics

Symbols

x, y:	usually used as space coordinates
t:	usually used as time coordinate
Δ	used to indicate "the difference" between two quantities
\overrightarrow{A}	a representation of a generic vector "A"
\mathbf{A}	another representation of a generic vector " A "
h:	sometimes used as the height above some surface
R:	often reserved for the distance between two objects, like planets
s:	often used as speed
v:	often used as velocity
a:	used as acceleration
<i>p</i> :	used as momentum
m:	used as mass
M:	also used as mass, sometimes for a large object like a planet
F:	used as a generic symbol for force
E:	used as a generic symbol for energy
K:	used as a symbol for kinetic energy
U:	sometimes used as a symbol for potential energy
g:	reserved for the acceleration due to gravity close to the Earth
G:	used as the Universal Gravitational Constant

Equations

v = x/t	the average velocity equation
$\Delta x = x - x_0$	use of Δ to show the difference between an end point x and starting point x_0
a = v/t	the definition of an average acceleration
p = mv	the definition of momentum
$\overrightarrow{p} = m \overrightarrow{v}$	definition of momentum as a vector
$x = 1/2at^2$	the distance traveled when experiencing a constant acceleration
F = ma	Newton's second law for a system that doesn't change its mass
$K = 1/2mv^2$	the definition of kinetic energy
U = mgh	the definition of gravitational potential energy near the Earth
$F = G \frac{M_1 M_2}{R_{1,2}^2}$	Newton's Universal Gravitational Law

2 Electrodynamics

Symbols

- Q: a symbol for a generic electric charge
- q: another symbol for a generic electric charge, but maybe a small one
- k: Coulomb's constant (not used much by me)
- **E**: symbol for the electric field
- **B**: symbol for the magnetic field
- U: a symbol also used for the potential energy in an electric field
- V: a symbol representing the "potential difference" or voltage in an electric field

Equations

 $\begin{array}{ll} F = k \frac{Q_1 Q_2}{R_{1,2}^2} & \text{Coulomb's Law of electrostatic force} \\ \overrightarrow{F} = \pm Q \overrightarrow{E} & \text{the force on a charge in an electric field (the sign of Q determines direction)} \\ \overrightarrow{F} = \pm Q \overrightarrow{v} \times \overrightarrow{B} & \text{the force on a charge } Q \text{ moving with velocity } v \text{ in a magnetic field } \mathbf{B}^1 \\ U = QV & \text{the energy gained by a charge } Q \text{ moving (accelerating) through a voltage } V \end{array}$

¹I've not actually used this "cross product" equation, but I write it here to remind you of the RH rule. Think of the \times as saying: "Take the fingers of your right hand and pass them first through the direction of the \vec{v} and then through the direction of \vec{B} and your thumb will point in the direction of \vec{F} . Here the sign of Q will turn the force in the other direction if Q is negative.

3 Tools

Symbols

\mathcal{L} :	a symbol for luminosity of a beam
σ :	the cross section for a collision to happen
R:	in context, the rate of the production of some particle physics reaction
N:	in context, the number of events produced in some period of time

Equations

 $R = \mathcal{L}\sigma$ the rate of the production of a particle reaction characterized by its particular cross section $N = \mathcal{L}\sigma\Delta t = R\Delta t$ the total number of events produced in a time period Δt

4 Special Relativity

Symbols

<i>c</i> :	symbol to represent the speed of light
u:	my symbol for the velocity of a frame of reference
<i>"A"</i> :	"Away," my notation for a frame of reference moving at a constant velocity relative to an observer
" H ":	"Home," my notation for the frame of reference of an observer

- γ : the "relativistic gamma"
- β : ratio of co-moving frame speed to that of light.
- s: the invariant interval in spacetime
- m_R : the relativistic mass
- E_m : the rest-mass energy, the rest energy
- K: still...the Kinetic Energy
- E_T the total energy

Equations

 $\begin{array}{ll} \beta = u/c & \text{the fraction of the speed of light, typically for a frame's motion, "Away" in my notation} \\ \gamma = \frac{1}{\sqrt{1-\beta^2}} & \text{the fraction of the speed of light, typically for a frame's motion, "Away" in my notation} \\ T_H = T_A \gamma & \text{a time interval of some clock, } T_A \text{ in the Away frame as observed in Home. Time dilation.} \\ L_H = L_A/\gamma & \text{a length of some object, } L_A \text{ in the Away frame as observed in Home. Length contraction.} \\ \Delta s^2 = c^2 \Delta T^2 - \Delta x^2 & \text{the invariant "interval" in spacetime—the same, independent of frame of reference} \end{array}$

$$\begin{array}{ll} v_{H} = \frac{v_{A} + u}{1 + \frac{v_{A}}{2} v_{A}} & \text{the relativistic velocity transformation for an object with } v_{A} \text{ moving in } u \text{ as seen by } v_{H} \\ \gamma \sim 1 + \frac{1}{2}\beta^{2} & \text{the approximation for } \gamma \text{ when the speed is low} \\ \frac{1}{\gamma} \sim 1 - \frac{1}{2}\beta^{2} & \text{the approximation for } \frac{1}{\gamma} \text{ when the speed is low} \\ E_{T} = m\gamma c^{2} & \text{the total relativistic energy} \\ E_{T}^{2} = m^{2}c^{4} + p^{2}c^{2} & \text{another relation for total relativistic energy} \\ m_{R} = m\gamma & \text{the increase of mass of a co-moving object} \\ E_{m} = mc^{2} & \text{the rest energy of a mass} \\ p = m\gamma & \text{the relativistic momentum} \\ K = mc^{2}(\gamma - 1) & \text{the kinetic energy} \end{array}$$

5 General Relativity and Cosmology, not done

Symbols

G:	the parts of Einstein's Field Equation relating to geometry, space, and time
T:	the parts of Einstein's Field Equation relating to energy, momentum, mass, pressure, density, stress

Equations

G = T a schematic representation of Einstein's Field Equation: geometrical pieces = energy pieces