The ATLAS experiment

Campus-Based LHC Physics Analysis

Spring 2009 a |nternet2 Member Meeting

' .
ARLINGTON, VIRGINIA April 27-29, 2009

Raymond Brock
Department of Physics and Astronomy
Michigan State University

Monday, April 27, 2009



TOC

1. a tiny bit of science
2. The data problem
3. The Tier 3 Task Force

Monday, April 27, 2009



a little science




Fermi National Accelerator Laboratory
Batavia, |ll

my field

High Energy Physics

aka
Elementary Particle Physics

European Centre for Nuclear Research (CERN)
Geneva, Switzerland

Monday, April 27, 2009



Suitable for any
occasion

A bundle of energy

will condense into distinct kinds of
globs: “particles”

We understand:

patterns among them
&

their dynamics: forces among them

we have a theory...

precise from:
atoms to 0.001 X rproton
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bra is slightly larger thas that 0.23%) oblsined from
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A MODEL OF LEPTONS®

Steven Weinbergh
Laboratory for Kuclear Scicnce and Physics Department,
Magzaachuseits Institute of Technology, Cambridge, Massachasetts
(Received 17 October 19670

Leptons interact only with photons, and with
the intermediate bosons that presumably me-
diate weak inteéractions. What could be more
natural than to unite' these spin-one bosons
into a multiplet of gauge fields ? Standing in
the way of this synthesis are the obvious dif-
ferences in the masses of the photon and inter-
mediate meson, and in their couplings. We
might hope to understand these diff erences
by imagining that the symmetries relating the
weak and electromagnetic interactions are ex-
act symmetries of the Lagrangian but are bro-
ken by the vacuum. However, this raises the
specter of unwanted massless Goldstone bosons
This note will describe a model in which the
symmetry between the electromagnetic and
weak interactions is spontanecusly broken,
but in which the Goldstone bosons are avolded
by introducing the pholon and the intermediate-
boson fields as gauge fields.? The model may
be renormalizable.

We will restrict our attention to symmetry
groups that connect the observed electron-type
leptons only with uﬂiur.ber i.e., not with
muon-type leptons or other umtuervad leptons
or hadrons. The symmetries then act on & left-
handed doublet
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and on a right-handed singlet

Ru[i{1-y)k. @2

The largest group that leaves invariant the kine-
matic terms -LybPa, L-Ry#o R of the Lagrang-
ian consists u[theeleﬂrmjl: in;ph‘j‘ acting
on L, plus the numbers Ny, Ny of left- and
right-handed clectron-type leptons. As far
as we know, two of these symmetries are en-
tirely unbroken: the charge @ =Ty-Ng-iNp,
and the electron momber N= Np+Np. But the
gauge field corresponding to an unbroken sym-
metry will have zero mass,” and there is no
massless particle coupled to N.* s0 we must
form gur gasge group out of the electroadc iso-
apéinfmdtbeﬂtﬂmu:hpenhm YuNp
+aNp.

Therefore, we shall construct our Lagrang-
ian out of L and R, pl-m:ﬁekh.ﬁ,

thqﬂu'lm'l'andl’ plus a spin-zero dou-
blet

() »

whose vacoum expectation value will break T
and ¥ and give the electron its mass. The on-
Iy rmmﬁilnhle Lagrangian which is invar-
iant under T and ¥ gauge transformations is

= i [ I s
= B - - 4 - -
Ry (8 —ig'B JR-Ly" (8 igt i 1!;‘5“11;

t

~4te o-igh -?w-'#rapwr’-ctim Re'L)-m %e's nie’er’. @

We have chosen the phase of the B field to make G
& fields to make the vacuum expectation value A=

1264

&

¢ real. The “physical™ ¢ fields are then ¢~

real, and can also adjust the phase of the L and
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We see immediately that the electron mass
is AG;. The charged spin-1 field is

w —amgg i, ¥ |
"II M" M"J' B)
and has mass
i -
My =bs. @
The newtral spin-1 fields of definite mass are
Z = Wia f 7
" Mol i " *.:‘B,Ll.‘ (10)
- 4 =1 ra 3 ]
An Pl o (A ag,EFI. 1)
Their masses are
M, = g g, 1z)
M, =0, (13)

50 A, is to be identified as the photon field.
The interaction between leptons and spin-1
mesons is

B _ B oo
)l e-atyemtuaglz . as

by this model have to do with the couplings

of the neutral intermediate meson Z;, . U2,
does not couple to hadrons then the best place
to look for effects of Z is in electron-neutron
scatiering. Applying a Fierz transformation
to the W-exchange terms, the total effective
€= interaction is

G | (3 -g7)
Tl‘r (lsy )"!ﬂ(g"' el T "s‘"\.'

I g%e then £5%2°, and this is just the usuoal
€-v scattering mairix element times an extra
I:mri. I g=¢ then g =g, and the vector
interaction is multiplied by a factor - § rath-
urthﬂi. Of course our model has too many
arbitrary features for these predictions to be

1265
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Z. Physik 58, 161 (1534). A model similar to ours
cussed by 5. Glaskhow, Nucl. Phys. 23, 579
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[DING, AND LEPTON-PAIR

[ESONS"

Cpton, New Tork

the currest-mixieg model is shown
berg's first sum rele a8 applied
the leptonic decay rates of 2",
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ded o the (1 +8) vector currents of the
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Periodic Table of the Elements

' hydrogen ¥ poor metals
~alkali metals O nonmetals

- alkali earth metals ¥ noble gases

© transition metals ~ rare earth metals
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Elementary Particles:
“Quarks,” “leptons,” and “Gauge
Bosons,” oh my:

g — =gertainly not.
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quarks leptons Bosons
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WE create

the tiniest bits
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“accelerators”

we collide
protons-protons - LHC

protons-antiprotons - Fermilab

velocities within few mph of ¢
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Quaﬂtum distances
Mechanics
demands

high energies = short distances

high energies = high temperatures

cistances WL
distance
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that’s hot.

reminiscent of event
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Dark Energy
Accelerated Expansion

Afterglow Light
Pattern Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc. ‘

about 400 million yrs.

Big Bang Expansion

13.7 billion years

10K = 1012 s .

NASA/WMAP Sclence Team
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Mmmm, Mmmm Good....
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—

E . /
~10-12sec : Standard Model is good! s R
Dark Energy
: Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc. S
Infle =
Wi e il S| v A WMAP
3 --..: %’ e 'r‘
"g: a0 o .
.a‘.' 33 - .. T .
) S ' 3 :
Flu : : WU (S e | : .
\
1st Stars
about 400 million yrs.
|< Big Bang Expansion ’|
13.7 billion years

18
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Standard Model

IS Incomplete




E 0l _ Lo
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WIin

Uig?s? (AW AW,

.fu'.”fr. (&)t 4 7 s R - o by, g - c
A v I R B et ey k| the mathematics fails us...

the Standard Model fails...

Un missionnaire du moyen age raconte qu'il avait trouvé le point

ott le ciel et la Terre se touchent... be -there d ragOnS?

after: Camille Flamsmmarion, L'Atmosphere: Météorologie Populaire (Paris, 1888), p. 163.
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particle accelerators
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ATLAS 59 ntins

164 institutions

- h
CO I I a bO rat I O n :lggOPilg s(’ztrijents

U.S.

500 physicists
43 universities
4 national labs ‘
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ATLAS

JA\
Toriodal
Hple
ApparatuS

b

4

1
J ,
r
o
I

Length = 40m
Radius =10 m
Weight = 7,000 t

electromagnetic calorimeters

hadronic calorimeters

inner tracking

muon detectors

oarrel air toroid
B=26T
5m<R<10m

endcap toro
solenoid
=R
R=1.5m

Monday, April 27, 2009



Monday, April 27, 2009



Monday, April 27, 2009



Monday, April 27, 2009



Status of the Machine:

39th (final) dipole was installed last Thursday
Vacuum work ongoing
Beams: September, 2009

Physics: late October
(5 TeV per beam, ~300pb'1, 2010/2011, 2 x 1032 Cm'18'1)
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the data “"problem”




S0...

just:

“plant” the beams

“hoe” the collision debris
“pick” the results

...publish
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| HC (Tevatron) = 1033734 (10%2) cm2 s

interaction rate = 700 MHz at 10°* cm™ s
'= 17.5 events per crossing ( = 23 In practice)
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LHC

SSC

:
D =
G T
5 3

GHz contend with this
iNagle}——
= MHZz
O
O 1 yb I ——
o KHz
-
O
o 1nb s
o Hz . .
= | sensitive to this
o(tT174 GeV/c?)
[ele] —
mHz

o(H100 gev)

10 10201 1 10 100 v's TeV
34

@103% cm2 s
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R
- ,y
h- e

collisions: 1,000,000;300/sec<;hd } 1:10-13
critical rare events: 0.0001/second '

;_;"‘

T

Finding 1 grain of sand in a 1/2 mi beach
300,000y to count at 1Hz.
sophisticated electronics...and computing.

9
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“regions of interest”

builder

partial events pulled @100kHz
full events pulled at 3 kHz

1600, 1kB data fragments
“pushed” @100kHz

-~
v‘.-_s“
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200 Hz
to CERN ,/;

computing é

centre ;:

ey

dual-CPU nodes: 30 1600

100 500

Network Switches I

Network Switches

LVL2
SuperV
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0, CERN

Analysis Object Data

ﬁ" reduced object-format
suitable for analysis

filtered e, j, mu i

Event Summary Data
after RECO
object-format
multiple e, j, mu

hits, cells c\x ’

RAW

byte-stream
RAW, 1.6MB l

ESD, 1MB '
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Have to
analyze It

3 PetaBytes of data/year

keep that up for
2 decades.




skimthinslimaug

l

THIN
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l,?ma.lys.i%OD
Object . @ @ @ [
Data o o @

Pet ..= .. VET Derived
Taud muon -
cses OO0 OO Physics

e OO0 Data 1

Event
Summary
Data -°° Cells
- 00000 :
Jet....'.. Dﬂv“{ed! DZPD kinematics
cmuon () )| MET ) P’hySICS - 90 o
Clusters DOOOO Hits Bata 2 0 . muon
0000000
TTrack OOOOO
0000000
Derived
Physics

AW Data 3
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Table 3: Data formats for ATLAS and quantities used in this analysis.

Format Target Range | Current | Used 1 Year Dataset
RAW 1.6 MB 1.6 MB 1600 TB

ESD 0.5 MB 0.7MB | 0.5 MB 500 TB

MC ESD | 0.5 MB 0.5 MB 500 TB

AOD 0.1 MB 0.17MB | 0.150 MB | 100 TB

TAG 1 kB 1 kB 1TB

Table 6: DPD formats and size estimates.

N.B. The DPD current amounts are

from [15] and are approximations to FDR #f data and are just presented as
a snapshot and not to be taken literally.

Format
D!PD
D?PD
D3PD
pDPD

?

Target Range | Current | Used | 1 Year Dataset
1/4x AOD 31 kB 25kB | 25 TB
1.1x DIPD 18 kB 30kB | 30 TB
1/3x D'PD | 5kB 6kB | 6TB
NA ? ?

ATLAS data come In all shapes
and sizes

where are they made? where are they stored? Not determined yet.
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T2 Cloud

T2 Cloud

I
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L 1
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ATLAS computing clouds:
US, Canada, Britain, Spain, France, Italy,
Netherlands, Germany, Scandinavia, Taiwan

US ATLAS Tier2 Centers: T L
1.MSU-UM “ATLAS Greafylakes - T2” center; Q
2.Stanford Linear Accelerator Center ~ )r

3.University of Chicago and Indiana
4.Boston University and Harvard
5.University of Texas, Arlington and Oklahoma i
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13

AOD
e ‘ D3PD '
N
cond/trig
‘

ATLAS data production chain
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CERN CASTOR,
permanent storage

France, Italy,
Netherlands,Nordic,
Germany, Spain

24-48 h, calibrated, full data
streamsto T1’s

P T SN
“Griek
T ’

,-
.o
.’

'
N

-
»
"

4
%

/
I E

UTA, B8 |ngiana, uv, @ BuU.
Uo Chicago I\/ISU-‘ Harvard
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We have to get
this right

The Tier 3s?

not really an explicit part of the plan
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“Tier 3 Task Force”




an enormous charge

for the first year of 10 fb-! data (2011-2012?)
determine the value of an enhanced Tier 3 presence
are there different kinds of Tier 3s?
are the Tier 2 clusters insufficient?

characterize them, cost them, support models for them
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ATLAS
Tier 3 Task Force

Doug Benjamin, Duke University Bruce Melado, University of Wisconsin,

Gustaaf Brooijmans, Columbia, Mark Neubauer, University of lllinois,

Sergei Chekanov, Argonne National Laboratory  Flera Rizatdinova, Oklahoma State University,
Jim Cochran, lowa State University, Paul Tipton, Yale University,

Michael Ernst, Brookhaven National Laboratory,  Gordon Watts, University of Washington,
Amir Farbin, University of Texas at Arlington, Chip Brock, Michigan State University

Marco Mambelli, University of Chicago
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U.S. ATLAS Tier 3 Task Force

DRAFT 5.5
February 26, 2009

Raymond Brock!*, Gustaaf Brooijmansz, Sergei Chekanov3**,
Jim Cochran®, Michael Ernst®, Amir Farbin®, Marco Mambelli”**,
Bruce Mellado®, Mark Neubauer’, Flera Rizatdinoval?,

Paul Tipton!!, and Gordon Watts!?

t ‘ I e d O C u I I I e I I t ! Michigan State University, 2 Columbia University, 3 Argonne National Laboratory,

4Jowa State University; ® Brookhaven National Laboratory,
6 University of Texas at Arlington, ’ University of Chicago, 8 University of Wisconsin,
9 University of Illinois, '° Oklahoma State University,

meant to be complete: i e

a reference

www.pa.msu.edu/~brock/file sharing/T3TaskForce/final/TierThree vl executiveFinal.pdf
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Analysis Model Report REPORT OF THE STEERING GROUP-
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Edited by:
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Abstract
This repert summarizes the feedback and recommendations of the Analysis Model Fo- 2 E 5
rum during meetings held in the period June-November 2007, This work was the result of O O SE 2 REPOHT
many ATLAS physicists participating in the discussion at different stages and the goal of the

recommendations collected in this document is to define the analysis process during initial

data taking. A certain degree of flexibility in the analysis model is essential an this stage as

the model is expected to consolidate during the Full Dressed Rehearsal exercise and to fur-

ther evolve during the first vears of dara taking. Recommendations are provided in scction@ 24" arch 2000
and summarized again in scn:ijun Recommendations are labeled by a letter referecing to

asecton (e.g. E for EDM) and a number in increasing order.

AS COMPUTING MODEL IONARC Members

K), E. Auge (LA.LOrsay), G.Baglies: (PisallNFN),

. Barberis, C. Bee, R. Hawkings, 8. Jarp, R. Jones', anofNFN), 8. Bemardi {CINECA) M. Boschini (CILEAJ,
ggioli, G. Poulard, D. Quarrie, T. Wenaus - tech/CERN. J. Butier (FNAL), M. Campanella MEana/INFN),
co m pu tl n g (CERN). M D'Amato (BardINFN), M. Damer| (GenovaliNFN),
ERN), G. Erbaccl (CINECA), U. Gasparini (PadovalINEN),
Galvez (Catech), A Ghiselli (CNAFINFN), J Gordon (RAL),
{Owdord), K. Holtman [CERN), V. Karimgki (Helsinki),
1. Legrand (Caltech/CERN), M. Laltchouk (Columbia),
g}, P Lubrana {PerugialiNFN), L. Luminari (Rema1/INFN),
Computing Model is described. The main emphasis is on o (CILEA}, M. Michelotto (PadovalNFNJ I MoAdhur (Oxford),
running is established. The data flow from the output of {Tufts), H Newman {Calech), V. O'Dell (FNAL),
oh processing and analysis stages is analysed, in order to . B. Osculati ANFN), M. Pepe (PerugialiNFN).
rees, in terms of CPU power, disk and tape storage and d(Alberta), R Pordes (FNAL), F. Prelz (MilanoANFN),
network band vill be necessary 1o puarantee speedy access 1o ATLAS data ofINFN and CILEA), L Robertson(CERN). 5. Rolli (Tufts),
to all members of the Collaboration. Data Challenges and the commissioning runs are ol (PerugialiNFN). R0 Schaffer (Orsay). T.Schalk (BaBar),
used o prototype the Computing Model and test the infrastructure before the start of ERN). L. Stvestns (Barl/INFN}, G.P.Siroll {BolognalINFIN),
LHC operation. igliana (Tufis), C. St [l ), H- (CERN).
The initial planning for the carly stages of data-taking 1s also presented. In this phase, a nte (INFN), C.Vistall (CNAFANFN), | Willers (CERN),
greater degree of access to the unprocessed or partially processed raw data is envisaged. altach), D.O.Williams (CERN).

alf of the ATLAS Collaboration
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! Chair and eontsct person: Roger Jones(icemn.ch Jesue: 1
Revision: 0
Reference: ATLAS TDR--017, CERN-LHCC-2005-022
Created: 18 March 2005
Last modified: 20 June 205
Prepared By: ATLAS Computing Growp
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Workflow

Steady State Dataset Distribution
Dataset creation

Monte Carlo Production

“Chaotic” User Analysis (“Chaotic User” Analysis?)

Intensive Computing Tasks
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Steady State
Data

Distribution
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dataset

creation

D1PD—D2PD:

not entirely determined
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Detector
Simulation

computer representation of each detector element

realistic propagation of particles
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computationally
expensive

Generation
Simulation

Digitization

Sample
Minimum Bias
tt Production
Jets

Photon and jets
WE - ety,
W= — u=v,
Heavy ion

kSI12k-s !

Generation
0.0267
0.226
0.0457
0.0431
0.0788
0.0768

2.08
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Monte Carlo

production

Generation: T1

Simulation: T2
Digitization: T2

Reconstruction: T2
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Chaotic User

Analysis

human-intensive

data-handling
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What are your guides”

history is our only source of data




sclentific computing
ol=1glallgle
'S hard

Administrators

argue for funds against a plan

Users-have one thing in mind

not great about sticking to a plan
Physics analysis moves

faster than the best computing plans.
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history = Fermilab tevatron

DO and CDF: re-invented computing models many times

emerging technologies
made unanticipated, clever analyses possible
unanticipated, clever analyses

made extending technologies essential
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the world changed many times in the lifetime of the Tevatron

1. ubiquity of OO coding

2. emergence of inexpensive, commodity computer clusters

3. availability of distributed disk servers and management systems

4. development of high-speed networking and switching technologies

5. the Web, from cute to essential

Monday, April 27, 2009



an example:

“Matrix Element” calculations

many cpu-centuries of
computation

grid has failed DO for these

Multivariate combinations
COLLIE

Ensemble simulation

xﬁmnﬁmuﬁnn
xmmpmmjxmmj

IfE it e

xmﬁn xmnr
lMMJ mnm;

o o

~O out
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About these intensive computational methods:

this Is Important:

Nobody had ever dreamed of these sorts
of analysis tasks before this century

What kinds of surprises will the ATLAS era see?
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another example:

single top quark analyses: intense

» A DO analysis

source | files | events | jobs
data | 96k | 1600M | 2400
QCD background | 96k | 1600M | 2400
signal MC | 25.6k | 200M | 2400
bckgnd MC | 12k 120M | 560
total | 240k 3B 8000

about once per month

before systematic error studies

before “editorial board”
demands

Just one analysis
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orediction IS
hard

“I believe OS/2 is destined to be
the most important operating
system, and possibly program, of
all time.”

Bill Gates, OS/2 Programmers Guide,
November 1987

1997 projections

2006 actual

Peak (average) data rate (Hz) 50 (20) 100(35)
Events collected 600M/year 1500M/year
Raw Data Size (kB.event) 250 250
Reconstructed Data size(kB/event) 100 80
User format (kB/event) 1 40
Tape Storage 280 TB/year 1.6 PB on tape
Tape reads/writes (weekly) 30 TB/7TB
Analysis/cache disk 7 TB/year 220 TB
Reconstruction time (GHz-s/event) 2.0 50
User analysis times (GHz-s/event) 1
User analysis weekly reads ? 3B events
Primary reconstruction farm size (THz) 0.6 2.4 THz
Central analysis farm size (GHz) 0.6 2.2 THz
Remote resources (GHz) ? ~ 25THz
after after
Run 1 Run 2a
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Tier 2/3 Modeling




W
Tier 2’s are the heroes of ATLAS

But:
Are they physicist-innovation-capable?
Can they really handle the sort of human-intense load that will be likely?

Will physicists still try to move data near to them?

They are busy...will they be available?
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dataset status statistics for all period, TIER2S+ only, updated: 2009-04-27 16:45:03 UT
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Tier 2 resources

» 50%,

centrally managed for
simulation

950%

for national analyses

How much full
simulation?

How much fast simulation?

UsS Pledge to wLCG | 2007 | 2008 | 2009 2010 2011
CPU (kSI2k) | 2,560 | 4,844 | 7,337 | 12,765 | 18,194
Disk (TB) | 1,000 | 3,136 | 5,822 | 11,637 | 16,509
Tape (TB) 603 1,715 | 3,277 | 6,286 9,820
MBps
800
800 . . =
B T 5 1
0 = = 0§ B Mean
200
= _ il _ l " tarqget
: sosgell_ A . J

1 ASGC m CERN mFZK
B BNL

T1-> 12

mCNAF mLYON

NDGF mRAL

PIC

SARA

TRIUMF

- | —
1MTh 13h 15h 17h 19h 21h 23h O01h O03h OSh O7h 09h 11h
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' 3 2011, 2012
Benchmark: 10fb™' — , ?
| quantity value used high ‘ low | comments ‘

assume T2 Evolutio
LHC year 2010 2011 n.a. 2008 start
Ins. Lom 25T | 2 x 10% 35x10% | 10% Garoby, 140000

LHCC 08 120000 /
annual rounded 100000
f Ldt fb_]' 10 . ? ? from 12 80000 / —4—Disk (TB)
annual 60000 —8—CPU (kSI2
dataset 2 x 10° events | ? ? [71 40000 / /
sim. time 1990 kSI2Ks | 2850 kSI2K's | 1030 kSI2K s | [16] T /

. 20000 - —
dig. time 29.1 kSI2K s 29.2 kSI2K s | 23.1kSI2K s [16] § 2008 2009 2010 2011 2012 2013
(tf) L W—pu —e—Disk (TB) | 5911.634227 14095.88531 24784.36284 36783.81576 48783.59007 56401.83727
reco. time 47.4 kSI2K s 78.4 kSI2Ks | 8.07 kSI2Ks | [16] —B—CPU (kSI2K 21612.31646 3444198829 60630.21651 9215538477 105817.3529 119479
(tH) j W—e

digitization '
pileup factor 3.5 5.8 2.3 [16]
fraction of '
full dataset
for full sim 0.1 0.2 na.
factor rel.
to full sim. 0.05 0.38 0.004 [16]
for tf (ATLFAST-II) (fG4) (ATLFAST-IIF)
D'PD — D?PD | 0.5 kSI2K s ? ? [15]
D’PD — D°PD | 0.5KkSI2K s ? ? [15] .
disk R/W 100 MBps 200 MBps 10 MBps S. McKee

el Modeled It
sustained 50 MBps 100 MBps 10 MBps S. McKee .
network private
D | o Amir Farbin
# primary DPD 10
# subgroups 5
average CPU 1.4 kSI2K units | 2 NA
total ATLAS '
Tier 2 computing | 60.63MSI2k _ [11]

Monday, April 27, 2009




Tier 2 simulation for one year

Percent Tier 2 Required to Complete Simulation in 1 Year (2010, 1 x 10733)

4

» horizontal axis:
current

TDR 190

fraction fully simulated —(80

70
» vertical axis:

. —60
% worldwide

Tier 2s 150

—40

fraction fast-simulated

—30

III]FFIIIIIII]IIII"TII III,.I
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20
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10

:"..L“-%‘.' ‘
SN PR T 11%‘]‘|L 11
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Fraction of Recorded Data Fully Simulated
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a computing model
restricted to
Tier 2s seems like a risk:

1. The Tier 2s may become overloaded.

2. History tells us to expect the unexpected.

3. ...stuff will happen.




flexible and nimble

We have to expand our model to include the Tier 3 component.
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4 Primary Recommendations

Minimum requirements for US ATLAS university computing:

Recommended 4 defined classes of “Tier 3” centers
Recommended modifications to the ATLAS data management scheme
Recommended “human scale” data transfer capabilities

Recommended ATLAS technical support position

Remember:
benchmarking a “10fb! physics year”...2011-2012
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1. Defined classes of “Tier 3” centers

“Tier 3 Quartet”

4 classes of Tier 3 centers
each with distinct capabillities
each costed

use cases defined for each
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130Ss

Tier 3 with “grid services”
a campus-based, significant cluster
requiring AC/power infrastructure
Characterized a strawman
~$80k

University of lllinois building one

P
P
c

168 processors

1U —WF "k
1U J—— e |
1U J——— ] |
10U J—— L[] |
10U J—— [l |
1U J—— L] |
T — E_ﬂ \, Dual quad compute
1U I ' [ elements
Il —— - 241B usable
e— M__
1U ———— S |
1U J—— L
1U j— L
1U J—— [
1U — N
1U ————— N
1U — B L
2U f — Disk server
su |l DRRRERRIRN | a0 cis sher
20 EAMMERIIIN ] =i i sher
i —= 2 Servers: login, cluster
2U —_— = management, OSG,
PAVEEE - F————— N Gatekeeper, etc
1U W] :?é i KWVM
1u *Hﬂt:% switch
U | === Ll switch
2U I ups
2v  ([[E==—=—=[=][]| ves
2v |[|[E=[:i]ll]| uves
component | typical model quantity | unit cost, k$
UPS DELL 3 1.0
switch DELL PowerConnect 2 1.5
48GDbE, portmanaged
servers DELL PE2950 3 4.2
E5440 processor, 2.83GHz,
32GB RAM, 250GB drive
compute DELL PE1950 21 2.4
elements | E5440 processor, 2.83GHz,
16GB RAM, 250GB drive
storage DELL MD1000 2 5.4
elements (24TB,
usable)
KVM Belkin 1 1.3
rack 1
total cost $82.1k
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139

Tier 3 with “grid” connectivity
a campus-based, tower cluster

office-based
Characterized a strawman

~$25k
ANL and Duke are building them

380 processors

>100kSI2k
2018
ANL ASC cluster
NFS server NIS server Desktop PC
7

ol b

Interactive worker

< 58

PC farm

TECEEE

 J
% Condor master

component typical model quantity | unit cost, k$
switch Cisco 1GB 1 2.5
worker towers | Intel-based E5410 10 2.0
2.33GHz, 2 TB storage
8GB RAM
server DELL PE1950 4 0.5
elements E5440 processor, 2.83MHz,
16GB RAM, 250GB drive
total cost $24.5k
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Two other T3 classes

T3w
Tier 3 Workstation

unclustered workstations...OSG, DQ?2 client, root, etc

T3af

Tier 3 system built into lab or university analysis facility
special arrangement of purchasing through the AF

the CDF Model-fair-share computing privileges in exchange for contribution
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2. Recommended modifications to the

ATLAS da'ta management Scheme Command line tools ’ Enduser Tools ’ Production system ’

Distributed
Data Common Services—l

Modular Central — 3 —
Management [ RSt |
(DDM) WLCG OSG l LCG l NDGFI '

“Don Quijote 2” (DQ2) system
DATASE T /file-based for all ATLAS formats, RAW to user-defined
Owns all ATLAS SEs

Operates within the WLCG (OSG, LCG, NDGF)
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a project:

changes to DQ2
INn order to facilitate dataset subscription

In order to shield the Tier 3 from the whole data catalog
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access to the data

Tier 3gs and Tier 3g will require significant data transfer
Episodic
Sustained, scheduled (?) transfer rates

To move 1-2TB per day
~20MBps
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"B per day”

Require a robust, point-to-point connectivity
One particular university to one particular Tier 2
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a project:

to determine the best point-to-point connections

measure and determine the bottlenecks

fix them...by 2011-2012
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4, Recommended ATLAS technical support position

Technical Support

ATLAS analysis support
Internet?2 technical support

OSG technical support

university technical and infrastructure support
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N that spirit

Ruth Pordes asked me to show the following:
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The Open Science Grid & the Tier-3s

-
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Sites on the OSG:

UWM SuU
WISC L 2/0

NERSC UNI" ANL
UNL yiowa NDbyRDUE  NSF
LBL uiucC JUBT
STANFORD RENCI
ucsBe VANDERBILT . ORNL
CALTECH
JCLA UCR UNM ouU CLEMSON
TTU UTA LTU
SMU
LSU

IT

Monday, April 27, 2009



>80 Sites / Campuses are accessible as .
part of a coherent distributed infrastructure. f

Currently ~20 are US LHC Tier-3.
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Reaching out to the rest of the Campus

 Physics departments typically host the Tier-3 resources
and administration.

e OSG & Internet2 can help and consult with the rest of
the Campus:
Network and system architectures.
Sharing of computing farms and storage.
Software for using remote as well as local resources.
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Open Science Grid Provides:

Collaboration with ESNET and Internet2 network for data
movement and network use.

Software
Movement, storage and management of the data.
Job workflow, scheduling and execution.
Services

Information, accounting and monitoring.
Monitoring to determine the availability of sites.

Support
Security monitoring, incident response, and mitigation.

Operational support including centralized Ticket Handling.
Site Coordination: common support for site administrators.
End-to-end support for running production applications.
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Open Science Grid Provides:

Collaboration with ESNET and Internet2 network for data
movement and network use.

Software

Movement, storage and management of the data.
Jok . .

Not a “one size fits all”: Support determined by
what is needed.

Suppc
Security monitoring, incident response, and mitigation.
Operational support including centralized Ticket Handling.
Site Coordination: common support for site administrators.

End-to-end support for running production applications.
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Specific Support Group starting

US ATLAS, US CMS Tier-3 Coordinators

OSG Exec
Team

OSG Work Areas

OSG Production Coordinator
Includes Tier-3 responsibilities
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where are we"?

» early days...

couple of weeks since report accepted (\
- ) 50 75 100

» Immediate issues:
Doug Benjamin and Jim Cochran and ANL attacking Tier 3s

http://atlaswww.hep.anl.gov/twiki/bin/view/Tier3Setup/18May09Meeting

» Longer term:

funding & planning for T3g and T3gs and their infrastructure
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http://atlaswww.hep.anl.gov/twiki/bin/view/Tier3Setup/18May09Meeting
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Here’s

We

g
Py
I\ ’ v

_—;.
L

-

LHC Is a hug g’;
undertaking ‘ _

Maybe the largest techni o

A huge collaboration of:

scientific, engineering, governmental,

and universities
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thanks.

Raymond (Chip) Brock

Department of Physics and Astronomy
Michigan State University
brock@pa.msu.edu
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