The ATLAS experiment

and

Campus-Based LHC Physics Analysis

Raymond Brock Department of Physics and Astronomy Michigan State University

TOC

a tiny bit of science
 The data problem
 The Tier 3 Task Force

a little science

my field

High Energy Physics

aka

Elementary Particle Physics

Fermi National Accelerator Laboratory Batavia, III

European Centre for Nuclear Research (CERN) Geneva, Switzerland

Suitable for any occasion

A bundle of energy

will condense into distinct kinds of globs: "particles"

We understand:

patterns among them

&

their dynamics: forces among them

we have a theory...

precise from: atoms to 0.001 x r_{proton}

VOLUME 19, NUMBER 21

(2)

20 NOVEMBER 1967

VOLUME 19, NUMBER 21

PHYSICAL REVIEW LETTERS

11 In obtaining the expression (11) the mass difference between the charged and neutral has been ignored. 12M. Ademollo and R. Gatto, Nuovo Cimento 44A, 282 (1966); see also J. Pasupathy and R. E. Marshak, Phys. Rev. Letters 17, 888 (1966). 13 The predicted ratio [eq. (12)] from the current alge-

Leptons interact only with photons, and with

the intermediate bosons that presumably me-

diate weak interactions. What could be more

natural than to unite1 these spin-one bosons

into a multiplet of gauge fields? Standing in

the way of this synthesis are the obvious dif-

mediate meson, and in their couplings. We

might hope to understand these differences

by imagining that the symmetries relating the

weak and electromagnetic interactions are ex-

act symmetries of the Lagrangian but are bro-

ken by the vacuum. However, this raises the

This note will describe a model in which the

symmetry between the electromagnetic and

weak interactions is spontaneously broken,

but in which the Goldstone bosons are avoided

by introducing the photon and the intermediate-

boson fields as gauge fields.3 The model may

We will restrict our attention to symmetry

groups that connect the observed electron-type

muon-type leptons or other unobserved leptons

or hadrons. The symmetries then act on a left-

leptons only with each other, i.e., not with

 $L = \left[\frac{1}{2}(1+\gamma_5)\right] \begin{pmatrix} e \\ e \end{pmatrix}$

be renormalizable.

handed doublet

specter of unwanted massless Goldstone bosons.2

ferences in the masses of the photon and inter-

bra is slightly larger than that (0.23%) obtained from the p-dominance model of Ref. 2. This seems to be true also in the other case of the ratio $\Gamma(\eta \rightarrow \pi^+\pi^-\gamma)/$ $\Gamma(\gamma \gamma)$ calculated in Refs. 12 and 14. 14L. M. Brown and P. Singer, Phys. Rev. Letters 8, 460 (1962).

A MODEL OF LEPTONS*

Steven Weinbergt Laboratory for Nuclear Science and Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 17 October 1967)

and on a right-handed singlet

 $R = [\frac{1}{2}(1-\gamma_5)]e.$

The largest group that leaves invariant the kinematic terms $-\overline{L}\gamma^{\mu}\partial_{\mu}L-\overline{R}\gamma^{\mu}\partial_{\mu}R$ of the Lagrangian consists of the electronic isospin T acting on L, plus the numbers NL, NR of left- and right-handed electron-type leptons. As far as we know, two of these symmetries are entirely unbroken: the charge $Q = T_3 - N_R - \frac{1}{2}N_L$, and the electron number $N = N_R + N_L$. But the gauge field corresponding to an unbroken symmetry will have zero mass,4 and there is no massless particle coupled to N,5 so we must form our gauge group out of the electronic isospin \overline{T} and the electronic hyperchange $Y = N_R$ $+\frac{1}{2}NL$.

Therefore, we shall construct our Lagrangian out of L and R, plus gauge fields \overline{A}_{μ} and B_{μ} coupled to \overline{T} and Y, plus a spin-zero doublet

$$\rho = \begin{pmatrix} \varphi^0 \\ \varphi^- \end{pmatrix}$$
 (3)

whose vacuum expectation value will break T and Y and give the electron its mass. The only renormalizable Lagrangian which is invariant under T and Y gauge transformations is

$$\mathfrak{L} = -\frac{1}{4} (\partial_{\mu} \vec{A}_{\nu} - \partial_{\nu} \vec{A}_{\mu} + g \vec{A}_{\mu} \times \vec{A}_{\nu})^2 - \frac{1}{4} (\partial_{\mu} B_{\nu} - \partial_{\nu} B_{\mu})^2 - \overline{R} \gamma^{\mu} (\partial_{\mu} - ig' B_{\mu}) R - L \gamma^{\mu} (\partial_{\mu} ig \overline{\mathfrak{t}} \cdot \vec{A}_{\mu} - i \frac{1}{2} g' B_{\mu}) L$$

(1)

$$-\frac{1}{2} {}^{1} \partial_{\mu} \varphi - i g \overline{A}_{\mu} \cdot \overline{t} \varphi + i \frac{1}{2} g' B_{\mu} \varphi {}^{1} - G_{e} (\overline{L} \varphi R + \overline{R} \varphi^{\dagger} L) - M_{1}^{2} \varphi^{\dagger} \varphi + k (\varphi^{\dagger} \varphi)^{2}.$$
(4)

We have chosen the phase of the R field to make $G_{\mathfrak{C}}$ real, and can also adjust the phase of the L and Q fields to make the vacuum expectation value $\lambda = \langle \varphi^0 \rangle$ real. The "physical" φ fields are then φ^-

1264

PHYSICAL REV	IEW LETTERS 20 Novemb	ER 1967				
$\varphi^{0} - \varphi^{0\dagger})/i\sqrt{2}$. (5)	We see immediately that the electron mass is λG_e . The charged spin-1 field is					
o vacuum expec- erturbation the- and therefore the	$W_{\mu} = 2^{-1/2} (A_{\mu}^{1} + iA_{\mu}^{2})$	(8)				
and φ^- have mass	and has mass					
φ ⁻ have no phys-	$M_W = \frac{1}{2}\lambda g$.	(9)				
abined isospin	The neutral spin-1 fields of definite mass are					
ere ⁶ without chang- that G_e is very	$Z_{\mu} = (g^{2} + {g'}^{2})^{-1/2} (gA_{\mu}^{3} + g'B_{\mu}),$	(10)				
ht be very large," e disregarded	$A_{\mu}=(g^{2}+g'^{2})^{-1/2}(-g'A_{\mu}^{}+gB_{\mu}).$	(11)				
to replace φ ev- tation value	Their masses are					
(6)	$M_Z = \frac{1}{2}\lambda (g^2 + g'^2)^{1/2},$	(12)				
ain intact, while	M . = 0	(13)				
VIII CO	<i>M_A</i> =0,	(13)				
${}^{\mu}B_{\mu}^{\mu}^{\mu}^{2} - \lambda G_{e}^{e} \overline{e} e.$ (7)	so A_{μ} is to be identified as the photon field. The interaction between leptons and spin-1 mesons is	1.				
igg' - H						

$$+ \frac{i(g^2 + g'^2)^{1/2}}{4} \left[\left(\frac{3g'^2 - g^2}{g'^2 + g^2} \right) \overline{e} \gamma^{\mu} e - \overline{e} \gamma^{\mu} \gamma_5 e + \overline{\nu} \gamma^{\mu} (1 + \gamma_5) \nu \right] Z_{\mu}.$$
(14)

lectric charge

ling constant

constant is

= 2.07×10⁻⁶.

stronger by a

eak. Note al-

er than e, so while (12) gives

edictions made

 $1/2\lambda^2$

by this model have to do with the couplings of the neutral intermediate meson Z_{μ} . If Z_{μ} (15)does not couple to hadrons then the best place to look for effects of Z_{μ} is in electron-neutron as usual to hadscattering. Applying a Fierz transformation to the W-exchange terms, the total effective e-v interaction is (16)

$$\frac{G_W}{\sqrt{2}} p_{\gamma_{\mu}}(1+\gamma_5) \nu \left\{ \frac{(3g^2-g'^2)}{2(g^2+g'^2)} \overline{e} \gamma^{\mu} e + \frac{3}{2} \overline{e} \gamma^{\mu} \gamma_5 e \right\}$$

If $g \gg e$ then $g \gg g'$, and this is just the usual e-v scattering matrix element times an extra factor $\frac{3}{4}$. If $g \simeq e$ then $g \ll g'$, and the vector interaction is multiplied by a factor -2 rather than ³/₂. Of course our model has too many arbitrary features for these predictions to be

1265

mi, Z. Physik 88, 161 (1934). A model similar to ours discussed by S. Glashow, Nucl. Phys. 22, 579 I): the chief difference is that Glashow introduces etry-breaking terms into the Lagrangian, and ore gets less definite predictions. Goldstone, Nuovo Cimento 19, 154 (1961); J. Gold-A. Salam, and S. Weinberg, Phys. Rev. 127, 5 (1962). W. Higgs, Phys. Letters 12, 132 (1964), Phys. Letters 13, 508 (1964), and Phys. Rev. 145, 1156 ; F. Englert and R. Brout, Phys. Rev. Letters 321 (1964); G. S. Guralnik, C. R. Hagen, and T. W. ble, Phys. Rev. Letters 13, 585 (1964).

particularly T. W. B. Kibble, Phys. Rev. 155, (1967). A similar phenomenon occurs in the ng interactions; the p-meson mass in zeroth-order bation theory is just the bare mass, while the son picks up an extra contribution from the sponas breaking of chiral symmetry. See S. Weinberg, Rev. Letters 18, 507 (1967), especially footnote . Schwinger, Phys. Letters 24B, 473 (1967); show, H. Schnitzer, and S. Weinberg, Phys. Rev. ers 19, 139 (1967), Eq. (13) et seq. C. D. Lee and C. N. Yang, Phys. Rev. 98, 101 (1955). his is the same sort of transformation as that ch eliminates the nonderivative 7 couplings in the lel; see S. Weinberg, Phys. Rev. Letters 18, 188 7). The 7 reappears with derivative coupling bethe strong-interaction Lagrangian is not invarider chiral gauge transformation.

or a similar argument applied to the σ meson, see erg, Ref. 6.

. P. Feynman and M. Gell-Mann, Phys. Rev. 109, (1957),

MIXING, AND LEPTON-PAIR MESONS*

Upton, New York

and the Department of Physics. ago, Illinois 1967)

the current-mixing model is shown Weinberg's first sum rule as applied mong the leptonic decay rates of ρ^0 , are discussed.

tended to the (1+8) vector currents of the

= S0 a8 + S'0 a0 80'

(1)

H	H ¹ Periodic Table of the Elements														He		
Li	Be	 nyorogen alkali metals alkali earth metals 					 poor metals nonmetals noble gases 					B	C	N	08	F	¹⁰ Ne
Na	12 Mg	transition metals					rare earth metals					13 Al	Si	15 P	5 S	17 Cl	Ar
19 K	Ca ²⁰	SC	Ti Ti	V ²³	Cr ²⁴	25 Mn	Fe ²⁶	C0	28 Ni	Cu Cu	Zn Zn	Ga ³¹	Ge ³²	As	se Se	35 Br	36 Kr
Rb	38 Sr	³⁹ Y	40 Zr	41 Nb	42 Mo	43 TC	44 Ru	Rh	Pd Pd	47 Ag	48 Cd	49 In	50 Sn	Sb	Te ⁵²	53 	Xe
Cs	Ba	La La	Hf	Ta	74 W	Re Re	Os	r Ir	Pt	Au	Hg	81 Ti	⁸² Pb	83 Bi	84 Po	At 85	86 Rn
87 Fr	Ra Ra	AC	Unq	Unp	Unh	Uns	Uno	Une	Unn	3							
			Ce ⁵⁸	Pr Pr	Nd	Pm	62 Sm	Eu ⁶³	Gd ⁶⁴	Tb ⁶⁵	Dy 66	67 Ho	Er ⁶⁸	Tm	Yb	71 Lu	
			90 Th	Pa Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	es Es	100 Fm	101 Md	102 NO	103 Lr	

we create

the tiniest bits

understanding clocks?

"accelerators"

we collide

protons-protons - LHC protons-antiprotons - Fermilab *velocities within few mph of c*

 $E = mc^2$

Quantum Mechanics demands

high energies = short distances high energies = high temperatures

that's hot.

reminiscent of one event

0.000000000001 sec 1,000,000,000,000,000° C

°E

U

°C

Mmmm, Mmmm Good....

Standard Model

is incomplete

deeper...

the mathematics fails us... the Standard Model fails...

Un missionnaire du moyen âge raconte qu'il avait trouvé le point où le ciel et la Terre se touchent...

be there dragons?

after: Camille Flammarion, L'Atmosphere: Météorologie Populaire (Paris, 1888), p. 163.

particle accelerators

4 km

The "Tevatron" The Large Hadron Collider Fermi National Accelerator Laboratory CERN Batavia, IL Geneva, Switzerland

pp; 980 GeV/c per beam pp; 7000 GeV/c per beam

Ø and CDF Experiments

km

2

Geneva, Switzerland

CERN European Organization for

Nuclear Research

Large Hadron Collider (LHC)

Monday, April 27, 2009

ATLAS Colaboration 1900 authors 400 PhD students

39 nations 164 institutions

U.S. 500 physicists 43 universities 4 national labs

Status of the Machine:

39th (final) dipole was installed last Thursday Vacuum work ongoing

Beams: September, 2009

Physics: late October

(5 TeV per beam, ~300pb⁻¹, 2010/2011, 2 x 10³² cm⁻¹s⁻¹)

the data "problem"

SO...

just: "plant" the beams "hoe" the collision debris "pick" the results ...publish

LHC (Tevatron) = 10^{33-34} (10³²) cm⁻² s⁻¹ interaction rate = 700 MHz at 10³⁴ cm⁻² s⁻¹ \Rightarrow 17.5 events per crossing (= 23 in practice)

$$@10^{34} \text{ cm}^{-2} \text{ s}^{-1}$$

Monday, April 27, 2009

collisions: 1,000,000,000/second } 1:10⁻¹³ **critical rare events: 0.0001/second**

Finding 1 grain of sand in a 1/2 mi beach 300,000y to count at 1Hz. sophisticated electronics...and computing.

Analysis Object Data reduced object-format suitable for analysis filtered e, j, mu

Event Summary Data after RECO object-format multiple e, j, mu hits, cells

RAW byte-stream

Have to analyze it 3 PetaBytes of data/year

keep that up for 2 decades.

skimthinslimaug

RECO

THIN

SLIM

AUGment

Monday, April 27, 2009

Format	Target Range	Current	Used	1 Year Dataset
RAW	1.6 MB		1.6 MB	1600 TB
ESD	0.5 MB	0.7 MB	0.5 MB	500 TB
MC ESD	0.5 MB		0.5 MB	500 TB
AOD	0.1 MB	0.17 MB	0.150 MB	100 TB
TAG	1 kB		1 kB	1 TB

Table 3: Data formats for ATLAS and quantities used in this analysis.

that's a lot of data

Table 6: DPD formats and size estimates. N.B. The DPD current amounts are from [15] and are approximations to FDR $t\bar{t}$ data and are just presented as a snapshot and not to be taken literally.

Format	Target Range	Current	Used	1 Year Dataset
D ¹ PD	$1/4 \times AOD$	31 kB	25 kB	25 TB
D ² PD	$1.1 \times D^{1}PD$	18 kB	30 kB	30 TB
D ³ PD	$1/3 \times D^{1}PD$	5 kB	6 kB	6 TB
pDPD	?	NA	?	?

that's a lot of formats

ATLAS data come in all shapes and sizes

where are they made? where are they stored? Not determined yet.

the world

the clouds

Monday, April 27, 2009

ATLAS computing clouds: US, Canada, Britain, Spain, France, Italy, Netherlands, Germany, Scandinavia, Taiwan

US ATLAS Tier 2 Centers:

1.MSU-UM "ATLAS Great Lakes - T2" center 2.Stanford Linear Accelerator Center 3.University of Chicago and Indiana 4.Boston University and Harvard 5.University of Texas, Arlington and Oklahoma

ATLAS data production chain

We have to get this right

The Tier 3s?

not really an explicit part of the plan

"Tier 3 Task Force"

an enormous charge

for the first year of 10 fb⁻¹ data (2011-2012?)

determine the value of an enhanced Tier 3 presence

are there different kinds of Tier 3s?

are the Tier 2 clusters insufficient?

characterize them, cost them, support models for them

ATLAS Tier 3 Task Force

Doug Benjamin, Duke University Gustaaf Brooijmans, Columbia, Sergei Chekanov, Argonne National Laboratory Jim Cochran, Iowa State University, Michael Ernst, Brookhaven National Laboratory, Amir Farbin, University of Texas at Arlington, Marco Mambelli, University of Chicago Bruce Melado, University of Wisconsin, Mark Neubauer, University of Illinois, Flera Rizatdinova, Oklahoma State University, Paul Tipton, Yale University, Gordon Watts, University of Washington, Chip Brock, Michigan State University

the document

meant to be complete:

a reference

U.S. ATLAS Tier 3 Task Force

DRAFT 5.5 February 26, 2009

Raymond Brock^{1*}, Gustaaf Brooijmans², Sergei Chekanov^{3**}, Jim Cochran⁴, Michael Ernst⁵, Amir Farbin⁶, Marco Mambelli^{7**}, Bruce Mellado⁸, Mark Neubauer⁹, Flera Rizatdinova¹⁰, Paul Tipton¹¹, and Gordon Watts¹²

 ¹Michigan State University, ²Columbia University, ³Argonne National Laboratory, ⁴Iowa State University, ⁵Brookhaven National Laboratory,
 ⁶University of Texas at Arlington, ⁷University of Chicago, ⁸University of Wisconsin, ⁹University of Illinois, ¹⁰Oklahoma State University, ¹¹Yale University, ¹²University of Washington *chair, **expert member

www.pa.msu.edu/~brock/file_sharing/T3TaskForce/final/TierThree_v1_executiveFinal.pdf

workflow

Steady State Dataset Distribution Dataset creation Monte Carlo Production "Chaotic" User Analysis ("Chaotic User" Analysis?) Intensive Computing Tasks

Steady State Data Distribution

dataset creation

D1PD→D2PD:

not entirely determined

Detector Simulation

computer representation of each detector element

realistic propagation of particles

57

computationally expensive

Generation Simulation Digitization

Sample	Generation	Simulation	Digitization
Minimum Bias	0.0267	551.	19.6
$t\bar{t}$ Production	0.226	1990	29.1
Jets	0.0457	2640	29.2
Photon and jets	0.0431	2850	25.3
$W^{\pm} ightarrow e^{\pm} v_e$	0.0788	1150	23.5
$W^\pm ightarrow \mu^\pm u_\mu$	0.0768	1030	23.1
Heavy ion	2.08	56,000	267

kSI2k-s !

Simulations look like data

Monte Carlo production

Generation: T1 Simulation: T2 Digitization: T2 Reconstruction: T2

Chaotic User Analysis

human-intensive

data-handling

What are your guides?

history is our only source of data

scientific computing planning is hard

Administrators

argue for funds against a plan

Users-have one thing in mind

not great about sticking to a plan

Physics analysis moves

faster than the best computing plans.

history = Fermilab tevatron

DØ and CDF: re-invented computing models many times

emerging technologies

made unanticipated, clever analyses possible

unanticipated, clever analyses

made extending technologies essential

neither of these are necessarily consistent with tight resource planning

the world changed many times in the lifetime of the Tevatron

- 1. ubiquity of OO coding
- 2. emergence of inexpensive, commodity computer clusters
- 3. availability of distributed disk servers and management systems
- 4. development of high-speed networking and switching technologies
- 5. the Web, from cute to essential

an example:

"Matrix Element" calculations

many cpu-centuries of computation

grid has failed DØ for these

Multivariate combinations COLLIE

Ensemble simulation

About these intensive computational methods:

this is important:

Nobody had ever dreamed of these sorts of analysis tasks before this century

What kinds of surprises will the ATLAS era see?

another example: single top quark analyses: intense

A DØ analysis

about once per month

before systematic error studies

before "editorial board" demands

just one analysis

source	files	events	jobs
data	96k	1600M	2400
QCD background	96k	1600M	2400
signal MC	25.6k	200M	2400
bckgnd MC	12k	120M	560
total	240k	3B	8000

prediction is hard

"I believe OS/2 is destined to be the most important operating system, and possibly program, of all time."

Bill Gates, OS/2 Programmers Guide, November 1987

?	$\sim 2.5 \text{THz}$
0.6	2.2 THz
0.6	2.4 THz
?	3B events
?	1
2.0	50
7 TB/year	220 TB
	30 TB/7TB
280 TB/year	1.6 PB on tape
1	40
100	80
250	250
600M/year	1500M/year
50 (20)	100(35)
1997 projections	2006 actual
	1997 projections 50 (20) 600M/year 250 100 1 280 TB/year 7 TB/year 2.0 ? ? 0.6 0.6 0.6 ?

Tier 2/3 Modeling

Tier 2's are the heroes of ATLAS

But:

Are they physicist-innovation-capable?

Can they really handle the sort of human-intense load that will be likely?

Will physicists still try to move data near to them?

They are busy...will they be available?

all ATLAS Tier 2s (September)

Tier 2 resources

50%,

centrally managed for simulation

50%

for national analyses

How much full simulation?

How much fast simulation?

US Pledge to wLCG	2007	2008	2009	2010	2011
CPU (kSI2k)	2,560	4,844	7,337	12,765	18,194
Disk (TB)	1,000	3,136	5,822	11,637	16,509
Tape (TB)	603	1,715	3,277	6,286	9,820

T1-> T2

Benchmark: $10fb^{-1} \rightarrow 2011, 2012?$

quantity	value used	high	low	comments
				assume
LHC year	2010	2011	n.a.	2008 start
Ins. \mathcal{L} cm ⁻² s ⁻¹	2×10^{33}	3.5×10^{33}	10 ³³	Garoby,
				LHCC 08
annual				rounded
$\int \mathcal{L} dt \ \mathrm{fb}^{-1}$	10	?	?	from 12
annual				
dataset	2×10^9 events	?	?	[7]
sim. time	1990 kSI2K s	2850 kSI2K s	1030 kSI2K s	[16]
	$(t\bar{t})$	γj	$W \rightarrow \mu$	
dig. time	29.1 kSI2K s	29.2 kSI2K s	23.1kSI2K s	[16]
	$(t\bar{t})$	j	$W \rightarrow \mu$	
reco. time	47.4 kSI2K s	78.4 kSI2K s	8.07 kSI2K s	[16]
	$(t\bar{t})$	j	$W \rightarrow e$	
digitization				
pileup factor	3.5	5.8	2.3	[16]
fraction of				
full dataset				
for full sim	0.1	0.2	na.	
factor rel.				
to full sim.	0.05	0.38	0.004	[16]
for $t\bar{t}$	(ATLFAST-II)	(fG4)	(ATLFAST-IIF)	
$D^1PD \rightarrow D^2PD$	0.5 kSI2K s	?	?	[15]
$D^2PD \rightarrow D^3PD$	0.5 kSI2K s	?	?	[15]
disk R/W	100 MBps	200 MBps	10 MBps	S. McKee
				private
sustained	50 MBps	100 MBps	10 MBps	S. McKee
network				private
fraction of data				
in pDPD	20%			
# primary DPD	10			
# subgroups	5			
average CPU	1.4 kSI2K units	2	NA	
total ATLAS				
Tier 2 computing	60.63MSI2k			[11]

modeled it.

Amir Farbin

Tier 2 simulation for one year

horizontal axis:

fraction fully simulated

vertical axis:

fraction fast-simulated

Percent Tier 2 Required to Complete Simulation in 1 Year (2010, 1 x 10^33)

a computing model restricted to Tier 2s seems like a risk:

1. The Tier 2s may become overloaded.

2. History tells us to expect the unexpected.

3. ...stuff will happen.

76

flexible and nimble

We have to expand our model to include the Tier 3 component.

Tier 3s today.

Survey: all but 6 ATLAS institutes

not much.

dot size/color: network connectivity: **100Mbps, 1Gbps, 10Gbps**

4 Primary Recommendations

Minimum requirements for US ATLAS university computing:

- 1. Recommended 4 defined classes of "Tier 3" centers
- 2. Recommended modifications to the ATLAS data management scheme
- 3. Recommended "human scale" data transfer capabilities
- 4. Recommended ATLAS technical support position

Remember: benchmarking a "10fb⁻¹ physics year"...2011-2012

1. Defined classes of "Tier 3" centers

"Tier 3 Quartet"

4 classes of Tier 3 centers

each with distinct capabilities

each costed

use cases defined for each

T3gs

Tier 3 with "grid services"

a campus-based, significant cluster requiring AC/power infrastructure

Characterized a strawman

~\$80k

University of Illinois building one

component	typical model	quantity	unit cost, k\$
UPS	DELL	3	1.0
switch	DELL PowerConnect	2	1.5
	48GbE, portmanaged		
servers	DELL PE2950	3	4.2
	E5440 processor, 2.83GHz,		
	32GB RAM, 250GB drive		
compute	DELL PE1950	21	2.4
elements	E5440 processor, 2.83GHz,		
	16GB RAM, 250GB drive		
storage	DELL MD1000	2	5.4
elements		(24TB,	
		usable)	
KVM	Belkin	1	1.3
rack			1
total cost			\$82.1k
	-		

80 processors >100kSl2k 20TB

component	typical model	quantity	unit cost, k\$
switch	Cisco 1GB	1	2.5
worker towers	Intel-based E5410	10	2.0
	2.33GHz, 2 TB storage		
	8GB RAM		
server	DELL PE1950	4	0.5
elements	E5440 processor, 2.83MHz,		
	16GB RAM, 250GB drive		
total cost			\$24.5k
			·

Two other T3 classes

T3w

Tier 3 Workstation

unclustered workstations...OSG, DQ2 client, root, etc

T3af

Tier 3 system built into lab or university analysis facility special arrangement of purchasing through the AF the CDF Model–fair-share computing privileges in exchange for contribution

evolution

evolution

Recommended modifications to the 2. ATLAS data management scheme ATLAS Distributed Data Management (DDM)

"Don Quijote 2" (DQ2) system

DATASET/file-based for all ATLAS formats, RAW to user-defined

Owns all ATLAS SEs

Operates within the WLCG (OSG, LCG, NDGF)

a project:

changes to DQ2

in order to facilitate dataset subscription

in order to shield the Tier 3 from the whole data catalog

access to the data

Tier 3gs and Tier 3g will require significant data transfer Episodic Sustained, scheduled (?) transfer rates To move 1-2TB per day ~20MBps

"TB per day"

Require a robust, point-to-point connectivity One particular university to one particular Tier 2

a project:

to determine the best point-to-point connections measure and determine the bottlenecks fix them...by 2011-2012 4. Recommended ATLAS technical support position

Technical Support

ATLAS analysis support

Internet2 technical support

OSG technical support

university technical and infrastructure support

91

in that spirit

Ruth Pordes asked me to show the following:

The Open Science Grid & the Tier-3s

Monday, April 27, 2009

Sites on the OSG:

Reaching out to the rest of the Campus

- Physics departments typically host the Tier-3 resources and administration.
- OSG & Internet2 can help and consult with the rest of the Campus:
 - Network and system architectures.
 - Sharing of computing farms and storage.
 - Software for using remote as well as local resources.

Open Science Grid Provides:

Collaboration with ESNET and Internet2 network for data movement and network use.

Software

Movement, storage and management of the data. Job workflow, scheduling and execution.

<u>Services</u>

Information, accounting and monitoring.

Monitoring to determine the availability of sites.

<u>Support</u>

Security monitoring, incident response, and mitigation. Operational support including centralized Ticket Handling. Site Coordination: common support for site administrators. End-to-end support for running production applications.

- **Open Science Grid Provides:**
- Collaboration with ESNET and Internet2 network for data movement and network use.

Software

Movement, storage and management of the data.

Job workflow colorduling and avecution

Not a "one size fits all": Support determined by what is needed.

Suppd-

Info

Mo

Servic

Security monitoring, incident response, and mitigation. Operational support including centralized Ticket Handling. Site Coordination: common support for site administrators. End-to-end support for running production applications.

Specific Support Group starting

where are we?

early days...

couple of weeks since report accepted

Immediate issues:

30 disk storage, TB 00 25 100 disk storage, TB 20 200 400 15 cores 100 50 75 cores

Doug Benjamin and Jim Cochran and ANL attacking Tier 3s

http://atlaswww.hep.anl.gov/twiki/bin/view/Tier3Setup/18May09Meeting

Longer term:

funding & planning for T3g and T3gs and their infrastructure

Here's

LHC is a hug undertaking

Maybe the largest technic

A huge collaboration of:

scientific, engineering, governmental, and universities

thanks.

Raymond (Chip) Brock Department of Physics and Astronomy Michigan State University brock@pa.msu.edu