Snowmass 2013 Energy Frontier working group

Michael Peskin SLAC Chip Brock Michigan State University

HEPAP September 5, 2013

the stakes

the energy frontier process

reports from the subgroups

themes

content

message

cases for future programs

imagine a couple of years ago

now

what embodies the

the Gauge Principle

What's odd about the Standard Model?

the Potential.

Much of our work is unpacking it:

particle physics

•

We know of BSM physics.

First-ever spin 0 elementary particle.

$$M_H^2 = M_{\text{tree}}^2 + \begin{pmatrix} H \\ \Box \\ H \\ H \end{pmatrix} + \begin{pmatrix} t \\ \Box \\ H \\ H \end{pmatrix} + \begin{pmatrix} W, Z \\ \Box \\ H \\ H \end{pmatrix} \end{pmatrix}$$

leads to perplexing quantum additive, quadratic cut-offs... in mass-squared, by the way

$$V(\text{Higgs}) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$

to many

Serious experimental anomalies

- The Higgs Boson mass is small.
- *v*'s flavor, mass, symmetry properties not SM.
- Dark Matter needs a quantum.
- Primordial antimatter needs an explanation.
- (g-2)µ results need confirmation or disconfirmation

Serious experimental anomalies

- The Higgs Boson mass is small.
- s flavor, Sym. Dark M. Sym. Primordial and Sym. An Oly results nee symmetry properties not SM.
- an explanation.

or

Conclusions from the Energy Frontier

A three-pronged research program:

- Measure properties of the Higgs boson.
- Measure properties of the: t, W, and Z
- Search for TeV-scale particles

A three-pronged research program:

Mass, CP, and especially couplings

Measure properties of the Higgs boson.

Measure properties of the: *t, W*, and *Z*

Search for TeV-scale particles

A three-pronged research program:

They talk to the Higgs Field Measure properties of the Higgs boson.

Measure properties of the: *t, W*, and *Z*

Search for TeV-scale particles

A three-pronged research program: Measure properties of the Higgs boson. Measure properties of the: *t*, *W*, and *Z* Search for TeV-scale Scale inspired by naturalness particles

The Snowmass Energy Frontier Process

EF working groups

EF1: The Higgs Boson

Jianming Qian (Michigan), Andrei Gritsan (Johns Hopkins), Heather Logan (Carleton), Rick Van Kooten (Indiana), Chris Tully (Princeton), Sally Dawson (BNL)

EF2: Precision Study of Electroweak Interactions

Doreen Wackeroth (Buffalo), Ashutosh Kotwal (Duke)

EF3: Fully Understanding the Top Quark

Robin Erbacher (Davis), Reinhard Schwienhorst (MSU), Kirill Melnikov (Johns Hopkins), Cecilia Gerber (UIC), Kaustubh Agashe (Maryland)

EF4: The Path Beyond the Standard Model–New Particles, Forces, and Dimensions

Daniel Whiteson (Irvine), Liantao Wang (Chicago), Yuri Gershtein (Rutgers), Meenakshi Narain (Brown), Markus Luty (UC Davis)

EF5: Quantum Chromodynamics and the Strong Interactions

Ken Hatakeyama (Baylor), John Campbell (FNAL), Frank Petriello (Northwestern), Joey Huston (MSU)

EF6: Flavor Physics and CP Violation at High Energy

Soeren Prell (ISU), Michele Papucci (LBNL), Marina Artuso (Syracuse)

Organization:

Created necessary correlations among groups

Technical groups, accelerators, simulations

Eric Prebys, Eric Torrence, Tom LeCompte, Sanjay Padhi, Tor Raubenheimer, Jeff Berryhill, Markus Klute, and Mark Palmer

Organization:

Created necessary correlations among groups

Technical groups, accelerators, simulations

Eric Prebys, Eric Torrence, Tom LeCompte, Sanjay Padhi, Tor Raubenheimer, Jeff Berryhill, Markus Klute, and Mark Palmer

Additional group "infrastructure"

established direct connection with the established collaborations:

"Advisors":

ATLAS: Ashutosh Kotwal; CMS: Jim Olsen; LHCb: Sheldon Stone; ILD: Graham Wilson; SiD: Andy White; CLIC: Mark Thomson; Muon Collider: Ron Lipton; VLHC: Dmitri Denisov

Energy Frontier Goals:

What are the scientific cases which motivate HL LHC running:

"Phase 1": circa 2022 with $\int L dt$ of approximately 300 fb -1

"Phase 2": circa 2030 with ∫ L dt of approximately 3000 fb -1

• How do the envisioned upgrade paths inform those goals?

Specifically, to what extent is precision Higgs Boson physics possible?

Energy Frontier Goals:

What are the scientific cases which motivate HL LHC running:

"Phase 1": circa 2022 with ∫ L dt of approximately 300 fb -1

"Phase 2": circa 2030 with ∫ L dt of approximately 3000 fb -1

- How do the envisioned upgrade paths inform those goals?
- Specifically, to what extent is precision Higgs Boson physics possible?

Is there a scientific necessity for a precision Higgs Boson program?

Energy Frontier Goals:

What are the scientific cases which motivate HL LHC running:

"Phase 1": circa 2022 with ∫ L dt of approximately 300 fb -1

"Phase 2": circa 2030 with ∫ L dt of approximately 3000 fb -1

- How do the envisioned upgrade paths inform those goals?
- Specifically, to what extent is precision Higgs Boson physics possible?

Is there a scientific necessity for a precision Higgs Boson program?

Is there a scientific case today for experiments at higher energies beyond 2030?

- High energy lepton collider?
- A high energy LHC?
- Lepton-hadron collider?

EF meetings:

the allovertheplace workshop.

snowmass@Princeton snowmass@Durham snowmass@Brookhaven snowmass@Dallas snowmass@SantaBarbara snowmass@Boston snowmass@Tallahassee snowmass@Boulder snowmass@Geneva snowmass@Seattle snowmass@Minneapolis

snowmass@Batavia

We simulated against a defined set of accelerators

This included:

LHC 14 TeV running at 300/fb and 3000/fb

LHC at 33 TeV

linear and circular e+ecolliders

muon collider

gamma-gamma colliders

pp collider at 100 TeV

Fast simulation tools

LHC simulation strategies

A Generic DELPHES 3 "Snowmass detector"

Background simulations

The LC community

Snowmass-specific analyses beyond the CLIC CDR & ILC TDR.

Signal & complete SM background samples

Reports are being finished up

300 pages of technical detail

http://www.snowmass2013.org/tiki-index.php?page=Energy%20Frontier

	HiggsSnowmassReport_Aug6.pdf (page 1 2 + 1	of 48)		[napp 1 of 52]
1 Exercises to inder The space to inder	igges working group by Dawas (Mail, Andrei Grinse, Jaha ge Gas (Michiga), Drah of August 6, 2013 Drah of August 6, 2013 etion	Preport J. Marker Legas (Corlean), Van Kooten (Indiana) energy frontier facilities in the last date view will be add (CBIN to the	1 Top quark working Draft date August 1, 2013 Conveners: K. Agashe, R. Erbacher, C. K. Schwiehnfor Constants by topich. A. Jongiov (top comjung): A. Jung, M. M. Vidaeo (rard enzy): "Golfing. J. Hubar, A. Iwanov,	group report P. D. C. M.
Soo Storesand	etroseakhopotDartyluj2t.pdf (K - S K C	a Clark Net as a set of the product of the prod	 Constributors S. Abili, B. Alvers Gonzáez, D. Amidi, J. M. Blackov, Y. Bai, M. Beyl, S. Braye, C. Bravat, C. Flerr, K. Bison, T. Boso, J. Boudress, J. Bray, S. Bravat, C. Broin, T. Galler, G. Chordaka, D. K. Bin, J. Broins, J. Boudress, J. Brann, C. Broins, J. Boudress, J. Brann, K. Bin, J. Broins, J. Boudress, J. Brann, S. Boudress, J. Brann, S. Boudress, J. Stati, J. Sati, J. Sati, S. Boudress, S. Kalla, J. Kanon, K. Kinka, C. Kins, P. Stotowardsteport Analysis and Barton, S. Boudress, P. Schenman, M. Condin, P. Sudov, R. Bionson, K. Sinka, P. Stotowardsteport Analysis and Instrument, S. Boudress, P. Stotowardsteport Analysis and Stationary Stationary, P. Boudress, P. Stotowardsteport Analysis and Stationary Stationary, P. Bartoward, K. Bartoward, K. Bistati, S. Stotowardsteport Analysis and Stationary, S. Katioward, S. Boudress, S. Stotowardsteport Analysis and Stationary, Stationary, P. Bartoward, K. Bin, P. Stotowardsteport Analysis and Stationary, Stationary, P. Bartoward, K. Branchard, P. Stotowardsteport Analysis and Stationary, Stationary, B. Bartowardsteport Analysis and Stationary, Stationary, P. Stationary, P. Bartowardsteport Analysis and Stationary, Stationary, P. Stat	ande in 5 K. E. Market S. K. E. Market S. K. E. Market S. K. E. Market Marke
Study of Electr the En Conveners: A M. Bask, A. Bodd, R. Capito, T. Orb	oweak Interacti ergy Frontier Kotwal and D. Wackeroth tt, C. Degrado, O. Eboli, J. Erler, B. Fe B. Heinerwer, J. L. Holdbauer, S. C. He			Hevett, J. Binchaues, K. Hows, A. Ismal, Y. Kata, K. Koades, K. O'Konz, A. Kumar, P. Langabert, A. Lat, J. Lat, J. Lat, J. Lavi, M. Lat, J. Lavi, R. Latin, J. Kata, M. Watter, L. T. Wag, D. Winnen, M. Wood, F. Yu, N. Zou, Tabas, and K. Latin, J. Wales, M. Watter, L. T. Wag, D. Winnen, M. Wood, F. Yu, N. Zou, Tabas, and K. Latin, J. Wales, M. Watter, L. T. Wag, D. Winnen, M. Wood, F. Yu, N. Zou, Tabas, and K. Latin, J. Wales, M. Watter, L. T. Wag, D. Watter, M. Watter, J. Yu, N. Zou, Tabas, and K. Latin, J. Wales, M. Watter, L. T. Wag, D. Harom, M. Wood, F. Yu, N. Zou, Tabas, and K. Latin, J. Wales, M. Watter, L. T. Wag, D. Harom, M. Wood, T. Wu, N. Zou, Tabas, and t
M. Marx, O. Mattelaer, J. Metcalle, M.A. W. Sakumoto, C. Schwinn, M. Sekulla,	leier, C. Pollard, M. Rauch, J. Reuter, M. E. Torrence, A. Vicini, G. Weiglein, G. W	1		1.1 Executive Summary
1.1 Introduction Authors: Ashutosh, Doreen		Working Conveners: J. M. Ci	g group report: QCD ampbell, K. Hatakeyama, J. Huston, F. Petriello	 With the discovery of the Higgs we have experimentally established the standard model with a scale particle that appears to be descentary. The signers us a model that can be extrapolated to very bit energy scales and forcer tile questionid the naturalness of elementary scalars. Additional motivatis for further exploration of the TW scale/endoms from supersymmetry. Higgs compositences, and as
Particle physics research at the energy fronti- Hadron Collider (LHC) are exploring the fa- expected to provide answers to some of the m- Higgs boson with SA-Mike properties at the L fully reveal the nature of the mechanism reg- boson. Besides the study of the Higgs boson at the energy frontier strive to discover new- that govern al dynamics and properties of	Particle pipels research at the energy frontier has estering ers. Experiments Blance Collider (URL) see exploring the folds of nature at an association of the second product of the experiments of the second sec		Lemmin, L. Becker, M. Bege, A. BORDAR, G. Bowlin, E. Bocagnelan, N. G. Dissertori, S. Dirmader, C. Perres, N. Show, T. Hapola marini, S. Biches, P. Janot, T. Kapersik, M. Kiku, U. Kuita, D. Konsow, Mathem, S. Mosta, N. Kahara, G. Marcade, M. J. Star, D. Konsow, M. Share, S. Showitz, A. Kahara, G. Marcade, M. J. Star, S. Kaber, J. M. S. Showitz, A. Starkar, M. Kater, M. J. Starkov, R. Vau de rt, F. J. Tachaman, F. Transnottano, J. R. Wahh, S. Zuberi August 15, 2013	 must, a was according to a property of the strength store of the strength store property of the store property of composite the store s
(ass) or partners process. The SSM is a broughty tested framework if the fundamental consultance of matter, has and strong interactions of matter particles forces (bottom, W and Z boosen, and the gi- accepted that the SM is morely a low-energy to reveal itself at the LHC or at future high matter candidate, its Superymentry (SISY) matter candidate, Superymentry (SISY)	e describing electromagnetic, weak and et d on a symmetry principle and mathemat es Mauroscafful) describes all presently o quarks and heptons) and of the mediators on D. Despite this commons success of the operoximition to a more fundamential theor mergy experiments, in form of the emerge idate for a theory beyond the SM, which i as additional symmetry connecting fermit	1.1 Executive summ A quantitative description of Natu phenomenology. The aucross of R of the QCD community in enable errors, through calculations to the development of ophiaticated Marti from over a decade of research was	INTY receives a decided association of equation in decision/variants (ACD) is 1 to 1.100 without space astronomy of QCD maintains holds to experi- and the discovery of the Higgs boson illustrated the indipensation ing discovery solver. From particularity distribution functions with robus next to exact to blacking order and beyond in perturbative QCD to the solution of the Higgs boson distribution functions with robus rest to exact to blacking order and beyond in perturbative QCD to the blacking order and black historic discovery possible. Run 3 of the LICI mark	 At the high-huminedity LHC, any preceding LHC run 2 discovery can be extensively studied. The high-huminedity LHC also actends the small for any studies. The run on models the important as a supersymmetric sector. The LLC are projective studies and the studies of t

the Proposal Frontier

Comments:

LHC 100/fb	LHC 300/fb	LHC 3/ab	ILC 250- 500GeV	ILC 1TeV	CLIC >1TeV	MC	TLEP	VLHC
years beyond TDR	TDR	LOI	TDR	TDR	CDR			

Exclusion

we always speak of "exclusion plots"

implying that the goal is to eliminate any place for new physics!

Not exclusion.

Discovery

 We've all seen these nice Cahill-Rowley, Hewett, Rizzo grids

300/fb

3000/fb
No exclusion.

Discovery

 We've all seen these nice Cahill-Rowley, Hewett, Rizzo grids

300/fb

3000/fb

No exclusion.

Discovery

 We've all seen these nice Cahill-Rowley, Hewett, Rizzo grids

Working Group Results

Big Questions

- 1. How do we understand the Higgs boson?
- 2. How do we understand the multiplicity of quarks and leptons?
- 3. How do we understand the neutrinos?
- 4. How do we understand the matter-antimatter asymmetry of the universe?
- 5. How do we understand the substance of dark matter?
- 6. How do we understand the dark energy?
- 7. How do we understand the origin of structure in the universe?
- 8. How do we understand the multiplicity of forces?
- 9. Are there new particles at the TeV energy scale?
- 10. Are there new particles that are light and extremely weakly interacting?
- 11. Are there extremely massive particles to which we can only couple indirectly at currently accessible energies?

The Higgs Boson

Higgs Boson Group Themes:

- 1. outline a precision Higgs program mystery of Higgs, theoretical requirements
- 2. projections of Higgs coupling accuracy measurement potential at future colliders
- 3. projections of Higgs property studies mass, spin-parity, CP mixture
- extended Higgs boson sectors
 phenomenology and prospects for discovery

couplings

Higgs discovery spawned an industry

- precision fitting of couplings,
 - eg for fermions

couplings

Early results are in line CMS Preliminary (s = 7 TeV, L ≤ 5.1 fb⁻¹ vs = 8 TeV, L ≤ 19.6 fb⁻¹ h or (g/2v)^{1/2} for fermions and VBs - 68% CL 95% CL w 10-1 τ 10-2 CM 2 3 4 5 10 20 100 200

mass (GeV)

couplings

How well do we need to know couplings?

Higgs group evaluated models

when new particles are ~1TeV:

	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim -3\%$

precision for precision's sake?

No - this is a discovery search

Current precision is multiple 10's%.

Evaluation of coupling extrapolations

Extrapolating LHC requires a strategy

2 numbers shown:*

Facility	LHC	HL-LHC	ILC500	ILC500-up	ILC1000	ILC1000-up	CLIC	TLEP (4 IPs)
$\sqrt{s}~({ m GeV})$	14,000	14,000	250/500	250/500	250/500/1000	250/500/1000	350/1400/3000	240/350
$\int {\cal L} dt$ (fb ⁻¹	$300/\exp($	3000/expt	250 + 500	1150 + 1600	250 + 500 + 1000	1150 + 1600 + 2500	500 + 1500 + 2000	10,000+2600
κ_γ	5-7%	2-5%	8.3%	4.4%	3.8%	2.3%	$-/5.5/{<}5.5\%$	1.45%
κ_g	6-8%	3-5%	2.0%	1.1%	1.1%	0.67%	3.6/0.79/0.56%	0.79%
κ_W	4-6%	2-5%	0.39%	0.21%	0.21%	0.13%	1.5/0.15/0.11%	0.10%
κ_Z	4-6%	2-4%	0.49%	0.24%	0.44%	0.22%	0.49/0.33/0.24%	0.05%
κ_ℓ	6-8%	2-5%	1.9%	0.98%	1.3%	0.72%	$3.5/1.4/{<}1.3\%$	0.51%
κ_d	10-13%	4-7%	0.93%	0.51%	0.51%	0.31%	1.7/0.32/0.19%	0.39%
κ_u	14-15%	7-10%	2.5%	1.3%	1.3%	0.76%	3.1/1.0/0.7%	0.69%

$$\begin{split} \bigstar \delta(\text{sys}) \propto \frac{1}{\sqrt{\mathcal{L}}} \\ \text{and} \\ \delta(\text{theory}) \downarrow 1/2 \end{split}$$

	κ_V	κ_b	κ_γ	Benchmark
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$	for discovery
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$	is few % to
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%	sub-%
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$	
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim -3\%$	

example precision by facility

Higgs Self-Coupling

Critical feature of SM

$$V(\text{Higgs}) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$

extremely challenging

Higgs Self-Coupling

Critical feature of SM

$$V(\text{Higgs}) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$

extremely challenging

	HL-LHC	ILC500	ILC500-up	ILC1000	ILC1000-up	CLIC1400	CLIC3000	HE-LHC	VLHC
$\sqrt{s} \; (\text{GeV})$	14000	5 00	5 0 0	500/1000	500/1000	1400	3000	33,000	100,000
$\int \mathcal{L}dt \ (\text{fb}^{-1})$	3000	500	1600^{\ddagger}	500/1000	$1600/2500^{\ddagger}$	1500	+2000	3000	3000
λ	<mark>50%</mark>	83%	46%	21%	13%	21%	10%	20%	8%

Higgs self-coupling is difficult to measure precisely at any facility.

$m_H \& \Gamma_H \text{ can be determined to a few \%}$

Mass

- LHC: 50 MeV/c²
- ILC: 35 MeV/c²

m_H & Γ_H can be determined to a few %

Mass

- LHC: 50 MeV/c²
- ILC: 35 MeV/c²

Total Width

LHC: limits on Γ

ILC: modelindependent

MC: direct

			(
Facility	LHC	HL-LHC	ILC500	ILC1000	ILC1000-up	CLIC	TLEP (4 IP)	$\mu { m C}$
$\sqrt{s}~({ m GeV})$	14,000	$14,\!000$	250/500	250/500/1000	250/500/1000	350/1400/3000	240/350	126
$\int \mathcal{L} dt \; (\mathrm{fb}^{-1})$	300	3000	250/500	250/500/1000	1150/1600/2500	500/1500/2000	10,000/1400	
$m_H ~({ m MeV})$	100	50	35	35	?	33	7	0.03 - 0.25
Γ_H	_	-	5.9%	5.6%	2.7%	8.4%	0.6%	1.7 - 17%
Γwtofew%								

Higgs Properties & extensions

- 1. SM Higgs spin will be constrained by LHC
- 2. Many models anticipate multiple Higgs' LHC has begun the direct search
 - The LHC can reach to 1 TeV, with a gap in tan beta
 - Lepton colliders can reach to sqrt(s)/2 in a modelindependent way.
 - Evidence for CP violation would signal and extended Higgs sector
 - Specific decay modes can access CP admixtures.
 - An example is h-> tau tau at lepton colliders.
 - Photon colliders and possibly muon colliders can test CP of the Higgs CP as an s-channel resonance.

The Higgs Boson message

1. Direct measurement of the Higgs boson is the key to understanding Electroweak Symmetry Breaking.

The light Higgs boson must be explained.

An international research program focused on Higgs couplings to fermions and VBs to a precision of a few % or less is required in order to address its physics.

The Higgs Boson message

1. Direct measurement of the Higgs boson is the key to understanding Electroweak Symmetry Breaking.

The light Higgs boson must be explained.

An international research program focused on Higgs couplings to fermions and VBs to a precision of a few % or less is required in order to address its physics.

2. Full exploitation of the LHC is the path to a few % precision in couplings and 50 MeV mass determination.

The Higgs Boson message

1. Direct measurement of the Higgs boson is the key to understanding Electroweak Symmetry Breaking.

The light Higgs boson must be explained.

An international research program focused on Higgs couplings to fermions and VBs to a precision of a few % or less is required in order to address its physics.

- 2. Full exploitation of the LHC is the path to a few % precision in couplings and 50 MeV mass determination.
- 3. Full exploitation of a precision electron collider is the path to a model-independent measurement of the width and sub-percent measurement of couplings.

Precision Study of Electroweak Physics

Electroweak: Themes

1. precision measurements:

traditional electroweak observables: $M_W,\,sin^2\theta_{eff}$ sensitive to new TeV particles in loops

- 2. studies of vector boson interactions triple VB couplings, VB scattering
 - Effective Field Theory approaches
 - sensitive to Higgs sector resonances

Now...a new target: BSM

Premium on M_W

Now fits include *M*_h

achievable M_W precision: few MeV/c²

1. M_W at the LHC

 $\delta M_W \sim 5$ MeV requires x7 improvement in PDF uncertainty

a critical need

2. M_W at the lepton colliders

A WW threshold program: $\delta M_W \sim 2.5 - 4$ MeV at ILC, sub-MeV at TLEP.

3. Furthermore: $\sin^2\theta_{eff}$

Running at the Z at ILC (Giga-Z) can improve $\sin^2\theta_{ef}f$ by a factor 10 over LEP/SLC;

TLEP might provide another factor 4.

EW scale - TeV?

Weak Interaction theory broke down at TeV scale

Higgs tames this...one of its jobs

searching beyond: quartic VB scattering

Effective Operator Machinery built into Madgraph specifically for the Snowmass EW group

 $\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \sum_{j} \frac{J_j}{\Lambda^4} \mathcal{O}_j + \cdots$

Comments:

Effective Operator Machinery built into Madgraph for Snowmass

Sensitivity to non-standard gauge interactions

VB Scattering

Luminosity and Energy win.

 $\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \sum_{i} \frac{f_j}{\Lambda^4} \mathcal{O}_j + \cdots$

The EW physics message

1. The precision physics of W's and Z's has the potential to probe indirectly for particles with TeV masses.

This precision program is within the capability of LHC, linear colliders, TLEP.

The EW physics message

1. The precision physics of W's and Z's has the potential to probe indirectly for particles with TeV masses.

This precision program is within the capability of LHC, linear colliders, TLEP.

2. Measurement of VB interactions probe for new dynamics in the Higgs sector.

In such theories, expect correlated signals in triple and quartic gauge couplings.

Fully Understanding the Top Quark

Top: Themes

- 1. Top Quark Mass
 - theory targets and capabilities
- 2. Top Quark Couplings
 - strong and electroweak couplings
- 3. Kinematics of Top Final States
 - top polarization observables and asymmetries
- 4. Top Quark Rare Decays
 - Giga-top program; connection to flavor studies
- 5. New Particles Connected to Top
 - crucial study for composite models of Higgs and top;
 stop plays a central role in SUSY
- 6. Boosted-top observables
Mass: why measure *m_t* precisely?

EWPOs

"keep up with" M_W precision

fundamental parameter
Yukawa coupling to Higgs
close to weak scale
stability argument sensitivity

why measure *m_t* precisely?

$$V(\text{Higgs}) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$

EWPOs

keep up with M_W precision

fundamental parameter

Yukawa coupling to Higgs

close to weak scale

stability argument sensitivity

why measure m_t precisely?

$$V(\text{Higgs}) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$

EWPOs

keep up with M_W precision

fundamental parameter

Yukawa coupling to Higgs

close to weak scale

stability argument sensitivity

A precision, theoretically sound *m_t* is doable at LHC

 $m(b\ell)$ endpoint method for m_t at LHC

 δm_t ~ 500 MeV/c² ultimately
matching the 5 MeV/c² precision goal of MW

Precision *m_t* at Lepton Colliders

theoretically clean 100 MeV accuracy in $m_t(\overline{MS})$, matching the needs of Giga-Z precision electroweak fit

Top partner searches to 1.2-1.5 TeV

search reach for vectorlike top partners at LHC 300 and 3000/fb

additionally

EW top-Neutral VB couplings

Top quark spin correlations

Flavor-changing top decays

Analysis techniques inoculate against pileup

Restore the performance with boosted techniques of grooming and trimming.

pileup = 0

= 140

The Top Quark physics message

1. Top is intimately tied to the problems of symmetry breaking and flavor

The Top Quark physics message

- 1. Top is intimately tied to the problems of symmetry breaking and flavor
- Precise and theoretically well-understood measurements of top quark masses are possible both at LHC and at e+e- colliders.

The Top Quark physics message

- 1. Top is intimately tied to the problems of symmetry breaking and flavor
- Precise and theoretically well-understood measurements of top quark masses are possible both at LHC and at e+e- colliders.
- New top couplings and new particles decaying to top play a key role in models of Higgs symmetry breaking.
 LHC will search for the particles;

Linear Colliders for coupling deviations.

Quantum Chromodynamics and the Strong Force

- 1. Improvement of PDFs and $\alpha_{\rm S}$
- 2. Event structure at hadron colliders

needed to enable all measurements
mitigation of problems from pileup at high luminosity

3. Improvement of the art in perturbative QCD

key role in LHC precision measurement, especially for Higgs

PDF uncertainties must improve

significant in regions relevant to Higgs, EWPOs, & new particle searches

Juan Rojo

Improve at LHC with W, Z, top rapidity distributions

full rapidity coverage required

complementary role of ATLAS,CMS and LHCb

additionally

importance of photon distribution function

- need to incorporate full EW resummation
- lattice contributions, esp aS

Landmark NNLO calculation of the top quark pair production cross section.

Czakon-Mitov

Soon for 2->2 & some 2->3 processes.

Higgs and many other LHC analyses.

The QCD Physics Message

1. Improvements in PDF uncertainties are achievable.

- There are strategies at LHC for these improvements.
- QED and electroweak corrections must be included in PDFs and in perturbative calculations.

The QCD Physics Message

1. Improvements in PDF uncertainties are achievable.

- There are strategies at LHC for these improvements.
- QED and electroweak corrections must be included in PDFs and in perturbative calculations.
- 2. alphas error ~ 0.1% is achievable

Iattice gauge theory + precision experiments

The QCD Physics Message

1. Improvements in PDF uncertainties are achievable.

- There are strategies at LHC for these improvements.
- QED and electroweak corrections must be included in PDFs and in perturbative calculations.
- 2. alphas error ~ 0.1% is achievable

Iattice gauge theory + precision experiments

3. Advances in all collider experiments, especially for Higgs boson physics & M_W

require continued advances in perturbative QCD.

The Path Beyond the Standard Model – New Particles, Forces, and Dimensions

1. Necessity for new particles at TeV mass

the questions of fine tuning and dark matter are still open

1. Necessity for new particles at TeV mass

the questions of fine tuning and dark matter are still open

- 2. Candidate TeV particles
 - weakly coupled: SUSY, Dark Matter, Long-lived
 - strongly coupled/composite: Randall-Sundrum, KK and Z' resonances, long-lived particles
 - evolution of robust search strategies

1. Necessity for new particles at TeV mass

the questions of fine tuning and dark matter are still open

- 2. Candidate TeV particles
 - weakly coupled: SUSY, Dark Matter, Long-lived
 - strongly coupled/composite: Randall-Sundrum, KK and Z' resonances, long-lived particles
 - evolution of robust search strategies
- 3. Connection to dark matter problem

1. Necessity for new particles at TeV mass

the questions of fine tuning and dark matter are still open

- 2. Candidate TeV particles
 - weakly coupled: SUSY, Dark Matter, Long-lived
 - strongly coupled/composite: Randall-Sundrum, KK and Z' resonances, long-lived particles

evolution of robust search strategies

- 3. Connection to dark matter problem
- 4. Connection to flavor issues

current LHC searches

New particle searches at the current LHC.

gain from now to 300/fb & beyond

x2 in gluino mass reach 8-14 TeV,

30% more with 300/fb - 3000/fb @14 TeV

factors of 2 for 33 TeV and 100 TeV

In the pMSSM survey of SUSY models

squark/gluino mass plane

Note closing of loopholes in addition to increased energy reach.

Cahill-Rowley et al.

m_{stop} reach: ~50% from E_{cm}, 1.5 in \mathcal{L}

Z' sensitivity

5-6+ TeV Discovery range at 14 TeV LHC

12-15 TeV limit range at 33 TeV pp

ILC asymmetry interference, beyond LHC

Dark Matter Connection

nearly close the thermal relic range?

progressive increase in sensitivity

VLHC (100 TeV) can probe WIMP DM candidacy up to 1-2 TeV

Likewise, VLHC closes the fine tuning requirement to 10⁻⁴

additionally

model discrimination in Z' discovery

WIMP sensitivity in ILC $e^+e^- \rightarrow \gamma + \chi + \chi$

SUSY neutralino decaying $\tilde{\chi}_1^0 \rightarrow W + \tau$

electroweak-inos, x2 sensitivity in 2015

The TeV scale is in sight

The NP Physics Message

1. TeV mass particles are needed in essentially all models of new physics. The search for them is imperative.

The NP Physics Message

- 1. TeV mass particles are needed in essentially all models of new physics. The search for them is imperative.
- 2. LHC and future colliders will give us impressive capabilities for this study.

The NP Physics Message

- 1. TeV mass particles are needed in essentially all models of new physics. The search for them is imperative.
- 2. LHC and future colliders will give us impressive capabilities for this study.
- 3. This search is integrally connected to searches for dark matter and rare processes.
The NP Physics Message

- 1. TeV mass particles are needed in essentially all models of new physics. The search for them is imperative.
- 2. LHC and future colliders will give us impressive capabilities for this study.
- 3. This search is integrally connected to searches for dark matter and rare processes.
- 4. A discovery in any realm is the beginning of a story in which high energy colliders play a central role.

Scientific Cases for:

LHC upgrades: 300, 3000/fb Linear ee collider: 250/500, 1000 GeV CLIC: CLIC: 350 GeV, 1 TeV, 3 TeV muon collider photon collider Circular ee collider: up to 350 GeV pp Collider: 33/100 TeV

cases for machine B

are usually written as if machine A found nothing.

an obvious point

an obvious point

cases for machine B

are usually written as if machine A found nothing.

The most important cases for machine B?

to study the discoveries of machine A with more precision.

and to find additional particles or forces

LHC: 300 fb⁻¹

Higgs EW Top QCD NP/flavor

1. Clarification of Higgs couplings, mass, spin, CP to the 10% level.

5. Theoretically and experimentally precise top quark mass to 600 MeV

10. x2 sensitivity to new particles: supersymmetry, Z', top partners – key ingredients for models of the Higgs potential – and the widest range of possible TeV-mass particles.

LHC: 300 fb⁻¹

- 1. Clarification of Higgs couplings, mass, spin, CP to the 10% level.
- 2. First direct measurement of top-Higgs couplings
- 3. Precision W mass below 10 MeV.
- 4. First measurements of VV scattering.
- 5. Theoretically and experimentally precise top quark mass to 600 MeV
- 6. Measurement of top quark couplings to gluons, Zs, Ws, photons with a precision potentially sensitive to new physics, a factor 2-5 better than today
- 7. Search for top squarks and top partners and ttbar resonances predicted in models of composite top, Higgs.
- 8. New generation of PDFs with improved g and antiquark distributions.
- 9. Precision study of electroweak cross sections in pp, including gamma PDF.
- 10. x2 sensitivity to new particles: supersymmetry, Z', top partners key ingredients for models of the Higgs potential and the widest range of possible TeV-mass particles.
- 11. Deep ISR-based searches for dark matter particles.

LHC: 3000 fb⁻¹

Higgs EW Top QCD NP/flavor

- 1. The precision era in Higgs couplings: couplings to 2-10% accuracy, 1% for the ratio gamma gamma/ZZ.
- 3. First measurement of Higgs self-coupling.

6. Precise measurements of VV scattering; access to Higgs sector resonances

- **12.** EW particle reach increase by factor 2 for TeV masses.
- 13. Any discovery at LHC-or in dark matter or flavor searches-can be followed up

LHC: 3000 fb⁻¹

- 1. The precision era in Higgs couplings: couplings to 2-10% accuracy, 1% for the ratio gamma gamma/ZZ.
- 2. Measurement of rare Higgs decays: mu mu, Z gamma with 100 M Higgs.
- 3. First measurement of Higgs self-coupling.
- 4. Deep searches for extended Higgs bosons
- 5. Precision W mass to 5 MeV
- 6. Precise measurements of VV scattering; access to Higgs sector resonances
- 7. Precision top mass to 500 MeV
- 8. Deep study of rare, flavor-changing, top couplings with 10 G tops.
- 9. Search for top squarks & partners in models of composite top, Higgs in the expected range of masses.
- 10. Further improvement of q, g, gamma PDFs to higher x, Q^2
- 11. A 20-40% increase in mass reach for generic new particle searches can be 1 TeV step in mass reach
- **12.** EW particle reach increase by factor 2 for TeV masses.
- 13. Any discovery at LHC-or in dark matter or flavor searches-can be followed up

ILC, up to 500 GeV

- Tagged Higgs study in e+e-> Zh: model-independent BR and Higgs Γ, direct study of invisible & exotic Higgs decays
- 2. Model-independent Higgs couplings with % accuracy, great statistical & systematic sensitivity to theories.
- 4. Giga-Z program for EW precision, W mass to 4 MeV and beyond.

7. Sub-% measurement of top couplings to gamma & Z, accuracy well below expectations in models of composite top and Higgs

10. No-footnotes search capability for new particles in LHC blind spots --Higgsino, stealth stop, compressed spectra, WIMP dark matter

ILC, up to 500 GeV

- Tagged Higgs study in e+e-> Zh: model-independent BR and Higgs Γ, direct study of invisible & exotic Higgs decays
- 2. Model-independent Higgs couplings with % accuracy, great statistical & systematic sensitivity to theories.
- 3. Higgs CP studies in fermionic channels (e.g., tau tau)
- 4. Giga-Z program for EW precision, W mass to 4 MeV and beyond.
- 5. Improvement of triple VB couplings by a factor 10, to accuracy below expectations for Higgs sector resonances.
- 6. Theoretically and experimentally precise top quark mass to 100 MeV.
- 7. Sub-% measurement of top couplings to gamma & Z, accuracy well below expectations in models of composite top and Higgs
- 8. Search for rare top couplings in e+e- -> t cbar, t ubar.
- 9. Improvement of αS from Giga-Z
- 10. No-footnotes search capability for new particles in LHC blind spots --Higgsino, stealth stop, compressed spectra, WIMP dark matter

ILC 1 TeV

Higgs EW Top QCD NP/flavor

2. Higgs self-coupling, 13% accuracy

5. Model-independent search for new particles with coupling to gamma or Z to 500 GeV

7. Any discovery of new particles dictates a lepton collider program:

search for EW partners, 1% precision mass measurement, the complete decay profile, model-independent measurement of cross sections, BRs and couplings with polarization observables, search for flavor and CP-violating interactions

ILC 1 TeV

- 1. Precision Higgs coupling to top, 2% accuracy
- 2. Higgs self-coupling, 13% accuracy
- 3. Model-independent search for extended Higgs states to 500 GeV.
- 4. Improvement in precision of triple gauge boson couplings by a factor 4 over 500 GeV results.
- 5. Model-independent search for new particles with coupling to gamma or Z to 500 GeV
- 6. Search for Z' using e+e- -> f fbar to ~ 5 TeV, a reach comparable to LHC for similar models. Multiple observables for Z' diagnostics.

7. Any discovery of new particles dictates a lepton collider program:

search for EW partners, 1% precision mass measurement, the complete decay profile, model-independent measurement of cross sections, BRs and couplings with polarization observables, search for flavor and CP-violating interactions

CLIC: 350 GeV, 1 TeV, Higgs EW Top QCD NP/flavor

2. Higgs self-coupling, 10%

- 6. Model-independent search for new particles with coupling to gamma or Z to 1500 GeV: the expected range of masses for electroweakinos and WIMPs.
- 8. Any discovery of new particles dictates a lepton collider program as with the 1TeV ILC

CLIC: 350 GeV, 1 TeV,

- 1. Precision Higgs coupling to top, 2% accuracy
- 2. Higgs self-coupling, 10%
- 3. Model-independent search for extended Higgs states to 1500 GeV.

- 4. Improvement in precision of triple gauge boson couplings by a factor 4 over 500 GeV results.
- 5. Precise measurement of VV scattering, sensitive to Higgs sector resonances.
- 6. Model-independent search for new particles with coupling to gamma or Z to 1500 GeV: the expected range of masses for electroweakinos and WIMPs.
- 7. Search for Z' using e+e- -> f fbar above 10 TeV
- 8. Any discovery of new particles dictates a lepton collider program as with the 1TeV ILC

muon collider: 125 GeV, 350 GeV,1.5 TeV, 3 TeV

2. Ability to produce the Higgs boson, and possible heavy Higgs bosons, as s-channel resonances.

This allows sub-MeV Higgs mass measurement and direct Higgs width measurement.

muon collider: 125 GeV, 350 GeV,1.5 TeV, 3 TeV

 Similar capabilities to e+e- colliders described above.

(Still need to prove by physics simulation that this is robust against machine backgrounds.)

2. Ability to produce the Higgs boson, and possible heavy Higgs bosons, as s-channel resonances.

This allows sub-MeV Higgs mass measurement and direct Higgs width measurement.

Higgs EW Top QCD NP/flavor

2. Ability to study CP mixture and violation in the Higgs sector using polarized photon beams.

photon collider

1. An ee collider can be converted to a photon-photon collider at ~ 80% of the CM energy.

This allows production of Higgs or extended Higgs bosons as s-channel resonances, offering percentlevel accuracy in gamma gamma coupling.

2. Ability to study CP mixture and violation in the Higgs sector using polarized photon beams.

TLEP, circular e+e-

- 1. Possibility of up to 10x higher luminosity than linear e+e- colliders at 250 GeV. Higgs couplings measurements might still be statistics-limited at this level.
 - (Note: luminosity is a steeply falling function of energy.)

TLEP, circular e+e-

1. Possibility of up to 10x higher luminosity than linear e+e- colliders at 250 GeV. Higgs couplings measurements might still be statistics-limited at this level.

(Note: luminosity is a steeply falling function of energy.)

- Precision electroweak programs that could improve on ILC by a factor 4 in sstw, factor 4 in mW, factor 10 in mZ.
- 3. Search for rare top couplings in e+e- -> t cbar, tubar at 250 GeV.
- 4. Possible improvement in alphas by a factor 5 over Giga-Z, to 0.1% precision.

pp Collider: 33/100 TeV

- 5. Increased search reach over LHC, proportional to the energy increase, for all varieties of new particles (if increasingly high luminosity is available). Stringent constraints on "naturalness".
- 6. Ability to search for electroweak WIMPs (e.g. Higgsino, wino) over the full allowed mass range.

pp Collider: 33/100 TeV

- 1. High rates for double Higgs production; measurement of triple Higgs couplings to 8%.
- 2. Deep searches, beyond 1 TeV, for extended Higgs states.
- 3. Dramatically improved sensitivity to VB scattering and multiple vector boson production.
- 4. Searches for top squarks and top partners and resonances in the multi-TeV region.
- 5. Increased search reach over LHC, proportional to the energy increase, for all varieties of new particles (if increasingly high luminosity is available). Stringent constraints on "naturalness".
- 6. Ability to search for electroweak WIMPs (e.g. Higgsino, wino) over the full allowed mass range.
- 7. Any discovery at LHC -- or in dark matter or flavor searches -- can be followed up by measurement of subdominant decay processes, search for higher mass partners. Both luminosity and energy are crucial here.

Let's be clear.

We collider types say we know about Mass.

Really?

As long as we know

nothing about the neutral fermions

&

nothing about 85% of the gravitating universe

We don't know the Mass story.

This is serious.

The very light neutrino mass is BSM physics:

is it Dirac? – it's a tiny coupling to v

then the Higgs sector could be expanded

is it Majorana? – it might talk to a different Higgs!

then we have to find it

do they get mass differently... because it's tiny?

neutral fermions and charged fermions with different mass generation? Completely bizarre

Andre de Gouvea keeps making this point

This is serious.

The very light neutrino mass is BSM physics:

is it Dirac? – it's a tiny coupling to v Understanding, Mass, is still_{sector} is it'all-hands on deck''dphysics! *then we hav* firlf, and CF! do they get mass differently... because it's tiny?

neutral fermions and charged fermions with different mass generation? Completely bizarre

Andre de Gouvea keeps making this point

Energy Frontier: precision, mass reach, and surprise

LHC: exquisite instruments

proven capability

precision and surprise

Will point to the EF future at

ILC, Muon Collider, CLIC, TLep, $\gamma\gamma$, ep, or VLHC

by incrementally:

- Measuring the properties of the Higgs boson.
- Measuring the properties of the: t, W, and Z
- Searching for TeV-scale particles

The Higgs particle changes everything.

why? Confirming the SM?

No longer a goal

Now we're exploring.

The real meaning of

"Frontier"

But we know that the Standard Model is

It's only an effective model

It lacks dynamics to explain the change of potential

EW top-Neutral VB couplings

projected precision of
$$t - \gamma, t - Z^0$$
 couplings

Collider	LHC		ILC/CLIC
CM Energy [TeV]	14	14	0.5
Luminosity $[fb^{-1}]$	300	3000	500
SM Couplings			
photon, F_{1V}^{γ} (0.666)	0.042	0.014	0.002
Z boson, F^Z_{1V} (0.24)	0.50	0.17	0.003
Z boson, F_{1A}^Z (0.6)	0.058	?	0.005
Non-SM couplings			
photon, F_{1A}^{γ}	0.05	?	?
photon, F_{2V}^{γ}	0.037	0.025	0.003
photon, F_{2A}^{γ}	0.017	0.011	0.007
Z boson, F_{2V}^Z	0.25	0.17	0.006
Z boson, ReF_{2A}^Z	0.35	0.25	0.008
Z boson, ImF_{2A}^Z	0.035	0.025	0.015

BSM: 2-10 %

LHC : few %

ILC/CLIC: sub-%

Top quark spin correlation

diagnostic of top polarization;

a sensitive probe for top partners, esp stealthy stop

Flavor-changing top decay

10⁻⁴ level probes BSM top decay models

projected limits for FCNC top decay processes

Process	Br Limit	Search	Dataset	Referenc
$t \rightarrow Zq$	2.2×10^{-4}	ATLAS $t\bar{t} \rightarrow Wb + Zq \rightarrow \ell\nu b + \ell\ell q$	$300 { m ~fb^{-1}}, 14 { m ~TeV}$	[136]
$t \to Zq$	$7 imes 10^{-5}$	ATLAS $t\bar{t} \rightarrow Wb + Zq \rightarrow \ell\nu b + \ell\ell q$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$	[136]
$t \to Zq$	$5(2) \times 10^{-4}$	ILC single top, $\gamma_{\mu} (\sigma_{\mu\nu})$	$500 { m ~fb^{-1}}, 250 { m ~GeV}$	Extrap.
$t \to Zq$	$1.5(1.1) \times 10^{-4(-5)}$	ILC single top, $\gamma_{\mu} (\sigma_{\mu\nu})$	$500 {\rm ~fb^{-1}}, 500 {\rm ~GeV}$	[137]
$t \to Zq$	$1.6(1.7) imes 10^{-3}$	ILC $t\bar{t}, \gamma_{\mu} (\sigma_{\mu u})$	$500 \text{ fb}^{-1}, 500 \text{ GeV}$	[137]
$t \rightarrow \gamma q$	8×10^{-5}	ATLAS $t\bar{t} \rightarrow Wb + \gamma q$	$300 { m ~fb^{-1}}, 14 { m ~TeV}$	[136]
$t\to \gamma q$	$2.5 imes 10^{-5}$	ATLAS $t\bar{t} \rightarrow Wb + \gamma q$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$	[136]
$t ightarrow \gamma q$	6×10^{-5}	ILC single top	$500 { m ~fb^{-1}}, 250 { m ~GeV}$	Extrap.
$t\to \gamma q$	6.4×10^{-6}	ILC single top	$500 {\rm ~fb^{-1}}, 500 {\rm ~GeV}$	[137]
$t ightarrow \gamma q$	1.0×10^{-4}	ILC $t\bar{t}$	$500 {\rm ~fb^{-1}}, 500 {\rm ~GeV}$	[137]
Finding the identity of a Z'

Many more diagnostic observables are available in e+e-, similar reach.

Dark matter connection

WIMP search at ILC in $e^+e^- \rightarrow \gamma + \chi + \chi$

polarization significant in controlling backgrounds

Neutrino connection

Discover the SUSY neutralino decaying $\tilde{\chi}_1^0 \to W + \tau$ viathrough the R-parity violating SUSY coupling.

In "Type III seesaw," the θ23 controls the rate of thę̃⁰₁subleading decay In this model, with neutralino accessible at ILC, this prediction is directly testable.

electroweakinos

x 2 again...300/fb to 3000/fb

for lighter states with more difficult searches, in particular, states with only electroweak production at pp colliders.

Flavor connection

Discover KK resonance -> t tbar, search for decay to t cbar

Schoenrock, Drueke, Alavarez-Gonzalez, Schwienhorst

Photon PDF and QED

Photon-induced processes are increasingly important; need to extend the current state of the art in PDFs to QED.

Electroweak Sudakov

Electroweak corrections and Sudakov EW logs must be incorporated into event simulation.

Precision inputs from Lattice

Improvement in alphas and quark masses will come from lattice gauge theory.

These are necessary inputs to precision Higgs theory and other precision programs.

	Higgs X-section	PDG[1]	Non-lattice	Lattice	Lattice	Prospects from
	Working Group [34]			(2013)	(2018)	ILC/TLEP/LHeC
$\delta \alpha_{s}$	0.002	0.0007	0.0012 [1]	0.0006 [24]	0.0004	0.0001 - 0.0006 [8, 27, 28]
$\delta m_c \; (\text{GeV})$	0.03	0.025	0.013[31]	0.006 [24]	0.004	-
$\delta m_b \; (\text{GeV})$	0.06	0.03	0.016[31]	0.023 [24]	0.011	-

Paul Mackenzie, Snowmass QCD report

Light scalar mass = mass confusion

"hierarchy" problem

additive, quadratic cut-offs...in mass-squared, by the way

$$M_H^2 = M_{\text{tree}}^2 + \begin{pmatrix} H \\ H \\ H \end{pmatrix} + \begin{pmatrix} t \\ H \\ H \end{pmatrix} + \begin{pmatrix} W, Z \\ H \end{pmatrix} + \begin{pmatrix} W, Z \\ H \\ H \end{pmatrix} + \begin{pmatrix} W, Z \\ H \\ H \end{pmatrix} + \begin{pmatrix} W, Z \\ H$$

Perhaps a huge hint?

of something "BSM"?

no shortage of ideas

$$M_{H}^{2} = M_{\text{tree}}^{2} + \left(\underbrace{\begin{matrix} H \\ \Box \end{matrix}}_{H \ H} \right) + \left(\underbrace{-}_{H} \underbrace{\downarrow}_{t} \right) + \left(\underbrace{-}_{H} \underbrace{\downarrow}_{H} \underbrace{\downarrow}_{H} \right) + \left(\underbrace{-}_{H} \underbrace{\downarrow}_{H} \underbrace{\downarrow}_{H} \right) + \left(\underbrace{-}_{H} \underbrace{\downarrow}_{H} \underbrace{\downarrow}_{H} \underbrace{\downarrow}_{H} \right) + \left(\underbrace{-}_{H} \underbrace{\downarrow}_{H} \underbrace{\downarrow$$

M_W, the old fashioned way

MCCM assessions in master 2 via mask attained allere viith

EWPOs

Now:

