ATLAS Highlights and Outlook

US LHC Users Association

Argonne National Laboratory November 13, 2014

Chip Brock, for the ATLAS Collaboration Michigan State University

ATLAS @work efficient and productive

~90% usable data efficiency 2010: $\sqrt{s} = 7$ TeV, 0.05/fb 2011: $\sqrt{s} = 7$ TeV, 4.6/fb 2012: $\sqrt{s} = 8$ TeV, 20.3/fb

Run I results: a 2014 publication stream

350 publications, ~150 performance

2

~100 to come

600 CONF notes

660 conference talks

Snowmass Energy Frontier

Research Program:

1. Measure properties of the Higgs boson.

Including: mass, CP properties, and especially couplings

2. Measure properties of the: t, W, and Z

Because they talk "loudly" to the Higgs

3. Search for TeV-scale particles

A scale inspired by naturalness

Snowmass Energy Frontier

Research Program:

1. Measure properties of the Higgs boson.

Including: mass, CP properties, and especially couplings

2. Measure properties of the: t, W, and Z

Because they talk "loudly" to the Higgs

3. Search for TeV-scale particles

A scale inspired by naturalness

1'll add:

- 4. Wrestle the Standard Model to the ground.
- 5. Search for kinematical anomalies wrt SM (see #4)

Is excitement about Run 2... sort of ...underwhelming?

Rule of thumb: a x10 increase in \mathscr{L} is like x2 in E_{cm}

and visa versa

Run 2 nearly gives us both leading to:

Unprecedented precision

W 's, tops, Higgs!, flavor, inclusive σ 's,

Significant discovery reach

surpass the 1 TeV SUSY scale, Z'/W', BSM Higgs

The LHC running is just beginning

(Anadi Canepa, today) " "phase 1 upgrades"

stay buckled in

"phase 2 upgrades"

ALICE

Higher energy: More parton luminosity

Higher energy: larger cross sections

Run 1 is essentially a wrap

Higgs Boson Physics

Notable results

from Run 1 we anticipated:

Discovery, first looks

from Run 1 we achieved:

Discovery, indeed. and more:

mass, couplings, important final states, differential distributions

in Run 2, we expect:

Cross sections 13/14 TeV, ttH, high mass BSM searches, combination precision couplings, differential distributions

~x10 more statistics

Higgs in slices differential distributions

the details unfolded to the particle level

Higgs couplings, 1 signal strengths, small, vibrant industry

succession of assumptions

least constrained, signal strength:

other fits with constraints

 $\mu_{VBF+VH} = \mu_{VBF} = \mu_{VH} \quad \mu_{ggf+t\bar{t}H} = \mu_{ggf} = \mu_{t\bar{t}}$

Higgs couplings, 2 global fitting, big, growing industry

SM higgs final state configurations:

WW, TT, bb (Puja Saha, Friday)

fiducial and differential cross sections ZZ

tTH —> 2 gamma, constrain top Yukawa

on-off peak total width measurement

125 GeV Higgs Boson characteristics

differential distributions, CP, spin

BSM Higgs searches

Charged Higgs, LFV final states, Heavy Higgs, NMSSM, Invisible decays, Exotic Higgs, scalar diphoton

Standard Model Physics

STANDARD

Notable results

from Run 1 we anticipated:

"Rediscovery"...Precision total & inclusive cross sections, VV studies, differential cross sections. Did we expect MW?

from Run 1 we achieved:

Rediscovery, indeed.

in Run 2, we expect:

Re-rediscovery...Precision couplings, differential distributions, much pileup study.

First *M_W*?

Attention to WW

5x - 10x more statistics

Standard Model Paleontology pick your favorite dinosaur

Standard Model Paleontology

pick your favorite dinosaur

22

The basics

ALFA detectors at ±240m

Elastic and total pp cross section

Reneral Whole Grain Whole Grain DOUG of Utamins (de Grain DOUG of Utami

and elastic slope $B = 19.73 \pm 0.14$ (stat) ± 0.26 (syst) GeV $^{-2}$

Result: $\sigma_{tot}(pp \to X) = 95.35 \pm 0.38$ (stat) ± 1.25 (exp) ± 0.37 (extr) mb

23

QCD jet physics di- jet observables

ATLAS-CONF-2014-045

25

7 TeV running, double differential, m_{jjj} good agreement with most NLO pdf for R = 0.4, less for R = 0.6

3 jet cross sections

QCD jet physics

Electroweak physics

W⁺W⁻ continues to be interesting

yesterday's background is today's confusion?

Comparison with theory is difficult

tt and t backgrounds mandate a jet-veto requirement of $p_{\rm T}$ > 25 GeV

ATLAS-CONF-2014-033

expect x10 or so more statistics

heavy flavor: W + c (arXiv:1402.6263) and $Z \rightarrow b\bar{b}$ (arXiv:1404.7042) underlying event

 $p_{\mathrm{T}}(Z)$

 $W\gamma$, $Z\gamma$, ZZ, W^+W^- , $W^\pm Z$, fully leptonic and semileptonic

jet structure

inclusive jet m_{jj}, boosted W/Zs, jet gap studies

Multi-bosons

aQGCs, TCG for Z/γ - WW

QGC for WWWW

evidence for electroweak WW fusion (Jessica Metcalfe, Friday), Zjj production

evidence for WW —> WWjj scattering

Top quark Physics

Notable results

from Run 1 we anticipated:

precision cross sections, precision mass of 1-3.5 GeV, rediscovery of single top, single top Wt channel

from Run 1, we achieved:

precise cross sections, mass, distributions ttbar and single top

in Run 2, we expect:

20x more statistics!

Top quark cross section

win-win

Most precise determinations from single and di-lepton channels

30

NNLO+NNLL agreement

largest sys: ttbar modeling & pdfs

Single top, Wt win-win

ATLAS evidence at 4.2σ

then ATLAS + CMS agreement with NLO+NNLL All 3 single top channels: single top-quark cross-section σ [pb] ATLAS Preliminary July 2014 single top-quark production t-channel Wt 10² NLO+NNLL at m, = 172.5 GeV MSTW2008 NNLO PDF T stat. uncertainty 10 E s-channel t-channel 4.59 fb⁻¹ arXiv:1406.7844 t-channel 20.3 fb⁻¹ ATLAS-CONF-2014-007 **Wt 2.05 fb⁻¹** PLB 716 (2012) 142 Wt 20.3 fb⁻¹ ATLAS-CONF-2013-100 * s-channel 95% C.L. limit 0.7 fb⁻¹ ATLAS-CONF-2011-118 8 13 10 11 12 14 *s* [TeV] ATLAS-CONF-2013-100

ATLAS-CONF-2014-007

ATLAS-CONF-2011-118

Combined ATLAS+CMS Wt ATLAS+CMS Preliminary TOPLHCWG September 2014 Data 2012, $\sqrt{s} = 8$ TeV, m = 172.5 GeV NLO+NNLL (arXiv:1210.7813) MSTW2008_{NNLO} stat. uncertainty scale uncertainty total uncertainty scale ⊕ PDF uncertainty $\sigma_{tW} \pm (stat) \pm (syst) \pm (lumi)$ ATLAS, $L_{int} = 20.3 \text{ fb}^{-1}$ $27.2 \pm 1.9 \pm 4.3 \pm 0.8 \text{ pb}$ ATLAS-CONF-2013-100 CMS, L_{int}= 12.2 fb⁻¹ $23.4 \pm 1.9 \pm 4.6 \pm 0.6 \text{ pb}$ PRL 112 (2014) 231802 LHC combined (Sep. 2014) $25.0 \pm 1.4 \pm 4.4 \pm 0.7 \text{ pb}$ ATLAS-CONF-2014-052, CMS-PAS-TOP-14-009 Effect of LHC beam energy uncertainty: 0.38 pb (not included in the figure) 20 10 30 40 50 60 70 σ_{tw} [pb] ATLAS-CONF-2013-052

Top quark mass win-win-win

2008 estimates for 1/fb: ±1–3.5 GeV in three channels

Run 1 results? Better than predicted.

the world: < 0.5% uncertainties

top cross sections

all hadronic final states, tau final states, ttbar/Z/WW

differential distributions: parton level, boosted ttbar, associated production with jets and heavy flavor, W/Z, high pt boosted

single top

CP violation

top mass

pole mass from cross section tail, t -T mass difference

top properties

charge, W polarization, FCNC searches, charge asymmetry, t polarization

Exotic Physics

Notable results

from Run 1 we anticipated:

supersymmetry discovery? no Higgs? Higgs? BSM Higgses (SP?), extension of Tevatron IVB' searches by x2 or more,

from Run 1 we achieved:

supersymmetry limits! one Higgs, BSM Higgs searches, IVB' searches

in Run 2, we expect:

early concentration on gluino searches, di- ℓ & di-jet bump searches BSM Higgs hints additional IVB' searches 50x - 1000x more statistics!

p

stop "Natural" scenarios?

Tev-ish new particle solution?

$$M_{H}^{2} = M_{\text{tree}}^{2} + \begin{pmatrix} H \\ H \end{pmatrix} + \begin{pmatrix} t \\ H \end{pmatrix} + \begin{pmatrix} t \\ H \end{pmatrix} + \begin{pmatrix} W \\ H \end{pmatrix} + \begin{pmatrix} W \\ H \end{pmatrix} + \begin{pmatrix} t \\ H \end{pmatrix} + \begin{pmatrix} H \\ H \end{pmatrix}$$

stop naturally motivated

e.g. direct stop/sbottom production

look like conventional tT

stop naturally motivated

e.g. direct stop/sbottom production

400

300

look like conventional tT

500

400

300

200

100

0

0

 $m(\tilde{\chi}_1^0)$

100

200

b/tSignature-based analyses: 0L + 2 bjets + MET 0L + 6 (2b) jets + MET 1L + 4 (1b) jets + MET 2L + jets + MET

b/t

 $ilde{\chi}_1^0$

 $\tilde{t}_1 \rightarrow t + \tilde{\chi}_1^0$

500

 $m(\tilde{t}_1)$

700

600

2L + jets + MET arxiv:1208.1447 (0 lepton 7 TeV) arxiv:1208.2590 (1 lepton 7 TeV) $L_{int} = 20 \text{ fb}^{-1}$ arxiv:1209.4186 (2 leptons 7 TeV) arxiv:1407.0583 (1 lepton 8 TeV, 20/fb) 500 600 700 arxiv:1406.1122 (0 lepton + 5/6 jets 8 TeV, 20/fb) arxiv:1403.4853 (2 lepton + jets+ MET 8 TeV, 20/fb) $m_{\tilde{t}}$ [GeV] [7] arxiv:1407.0608 (0 lepton + jets (c-jets) + MET 8 TeV, 20/fb)

e.g. direct stop/sbottom production

look like conventional tT $\tilde{t}_1\tilde{t}_1$ production, $\tilde{t}_1 \rightarrow b$ f f' $\tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow W$ b $\tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ Status: ICHEP 2014 500 rt $m_{\widetilde{\chi}_1^0}$ [GeV] **ATLAS** Preliminary $L_{int} = 20 \text{ fb}^{-1} \text{ s} = 8 \text{ TeV}$ $L_{int} = 4.7 \text{ fb}^{-1} \text{ (s}=7 \text{ TeV}$ 450 0L 1406.1122 OL [1208.1447] 1L [1208.2590] 1L [1407.0583] 2L [1403,4853] 2L [1209.4186] 400 1L [1407.0583], 2L [1403.4853] 0L [1407.0608], 1L [1407.0583] 350 Observed limits Expected limits 300 All limits at 95% CL 250 200 150 100 50 200 300 400 arXiv: 1406.5375

p \tilde{b}/\tilde{t} $ilde{\chi}_1^0$ \tilde{b}/\tilde{t} pb/t

Signature-based analyses: 0L + 2 bjets + MET 0L + 6 (2b) jets + MET 1L + 4 (1b) jets + MET

b/t

stop naturally motivated

stop naturally motivated

e.g. direct stop/sbottom production

look like conventional tT $\tilde{t}_1\tilde{t}_1$ production, $\tilde{t}_1 \rightarrow b$ f f' $\tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow W$ b $\tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ Status: ICHEP 2014 500 rt $m_{\widetilde{\chi}_1^0}$ [GeV] **ATLAS** Preliminary $L_{int} = 20 \text{ fb}^{-1} \text{ s} = 8 \text{ TeV}$ $L_{int} = 4.7 \text{ fb}^{-1} \text{ s} = 7 \text{ TeV}$ 450 0L [1208.1447] 0L 1406.1122 1L [1208.2590] 1L [1407.0583] 2L [1403.4853] 2L [1209.4186] 400 1L [1407.0583], 2L [1403.4853] 0L [1407.0608], 1L [1407.0583] 350 Expected limits Observed limits 300 All limits at 95% CL 250 200 150 bff ~ 100 50 4.7 fb⁻¹ $L_{int} = 20 \text{ fb}^{-1}$ 300 400 500 600 700 200 $m_{\tilde{t}}$ [GeV] arXiv: 1406.5375

arxiv:1403.4853 (2 lepton + jets+ MET 8 TeV, 20/fb) [7] arxiv:1407.0608 (0 lepton + jets (c-jets) + MET 8 TeV, 20/fb)

arxiv:1208.1447 (0 lepton 7 TeV) arxiv:1208.2590 (1 lepton 7 TeV) arxiv:1209.4186 (2 leptons 7 TeV) arxiv:1407.0583 (1 lepton 8 TeV, 20/fb) arxiv:1406.1122 (0 lepton + 5/6 jets 8 TeV, 20/fb)

stealthy stop kinematical no-man's land

second generation

STOD

ATLAS-CONF-2013-025

Run 2

Center of mass energy directly extends searches

that rule of thumb...

ATL-PHYS-PUB-2012-001

Run 2 Center of mass energy directly extends searches

ATL-PHYS-PUB-2012-001

Z prime electrons and muons

a standard way to extend the SM

Phys. Rev. D 90, 052005 – Published 19 September 2014 G. Aad et al. (ATLAS Collaboration)

44

Wprime electrons and muons

a partner

arXiv:1407.7494v1

amaWon*Prime* 10⁶ Events ATLAS W'→ ev Data 2012 10⁵ W'(0.5 TeV) √s = 8 TeV W'(1 TeV) ∫ L dt = 20.3 fb⁻¹ W'(3 TeV) 10⁴ w z 10³ Top quark Diboson 10² Multijet 10 10-1 Data/Bkg 10³ m_T [GeV] 10⁸ Events ATLAS $W' \rightarrow \mu \nu$ Data 2012 10 W'(0.5 TeV) √s = 8 TeV W'(1 TeV) 10⁶ ∫ L dt = 20.3 fb⁻¹ W'(3 TeV) 10⁵ w Z 104 Top quark Diboson 10³ Multijet 10² 10 10 Data/Bkg 1.5 0.5

 10^{3}

m_T [GeV]

10²

Exotics in a nutshell

a big nutshell

Correst

SUSY in a nutshell

A	TLAS SUSY Se	arches	s* - 95	5% (CL LO	ower Limits 1 ToV s	ATL	S _Preliminary
Sta	atus: ICHEP 2014	PUTY	lata	F miss	60.400		ocale	$\sqrt{s} = 7, 8 \text{ TeV}$
Inclusive Searches	MODEL MSUGRA/CMSSM MSUGRA/CMSSM $\tilde{q}\bar{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{1}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{0}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \ell \nu / \nu \nu) \tilde{\chi}_{1}^{0}$ GMSB (ℓ NLSP) GMSB (ℓ NLSP) GGM (bino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP) Gravitino LSP	$\begin{array}{c} 0\\ 1 \ e, \mu\\ 0\\ 0\\ 0\\ 1 \ e, \mu\\ 2 \ e, \mu\\ 2 \ e, \mu\\ 1 \ 2 \ r, \mu \ -1 \ \ell\\ 2 \ \gamma\\ 1 \ e, \mu + \gamma\\ \gamma\\ 2 \ e, \mu \ (Z)\\ 0 \end{array}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	\tilde{q}, \tilde{g} 1.2 \tilde{g} 1.2 \tilde{g} 1.1 T \tilde{q} 850 GeV \tilde{g} 1.1 T \tilde{q} 850 GeV \tilde{g} 1.1 T \tilde{g} 1.12 T \tilde{g} 1.12 T \tilde{g} 1.2 \tilde{g} 1.2 \tilde{g} 1.12 T \tilde{g} 619 GeV \tilde{g} 619 GeV \tilde{g} 619 GeV \tilde{g} 690 GeV	$\begin{array}{c c} \textbf{1.7 TeV} & m(\tilde{q}) = m(\tilde{g}) \\ \textbf{eV} & any m(\tilde{q}) \\ \textbf{r} & any m(\tilde{q}) \\ m(\tilde{\chi}_1^{0}) = 0 \text{ GeV}, m(1^{st} \text{ gcn.} \tilde{q}) = m(2^{nd} \text{ gcn.} \tilde{q}) \\ \textbf{3 TeV} & m(\tilde{\chi}_1^{0}) = 0 \text{ GeV} \\ \textbf{sV} & m(\tilde{\chi}_1^{0}) = 0 \text{ GeV} \\ \textbf{sV} & m(\tilde{\chi}_1^{0}) = 0 \text{ GeV} \\ \textbf{tan}\beta < 15 \\ \textbf{1.6 TeV} & tan\beta < 15 \\ \textbf{1.6 TeV} & tan\beta > 20 \\ \textbf{TeV} & m(\tilde{\chi}_1^{0}) > 50 \text{ GeV} \\ m(\tilde{\chi}_1^{0}) > 50 \text{ GeV} \\ m(\tilde{\chi}_1^{0}) > 50 \text{ GeV} \\ m(\tilde{\chi}_1^{0}) > 220 \text{ GeV} \\ m(\tilde{\chi}_1^{0}) > 50 \text{ GeV} \\ m(\tilde{\chi}_1^{0}) > 200 \text{ GeV} \\ m(\tilde{\chi}_1^{0}) > 10^{-4} \text{ eV} \\ \end{array}$	1405.7875 ATLAS-CONF-2013-062 1308.1841 1405.7875 1405.7875 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 ATLAS-CONF-2013-063 1208.4688 1407.0603 ATLAS-CONF-2014-001 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152 ATLAS-CONF-2012-144
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	\$\vec{g}\$ 1.2 \$\vec{g}\$ 1.1 T \$\vec{g}\$ 1 \$\vec{g}\$ 1	$\begin{array}{lll} \mbox{TeV} & m(\tilde{k}_1^0){<}400\mbox{GeV} \\ \mbox{\prime} & m(\tilde{k}_1^0){<}350\mbox{GeV} \\ \mbox{4 TeV} & m(\tilde{k}_1^0){<}400\mbox{GeV} \\ \mbox{TeV} & m(\tilde{k}_1^0){<}300\mbox{GeV} \\ \end{array}$	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} & \tilde{b}_{1} \tilde{b}_{1}, \tilde{b}_{1} \to b \tilde{\chi}_{1}^{0} \\ & \tilde{b}_{1} \tilde{b}_{1}, \tilde{b}_{1} \to t \tilde{\chi}_{1}^{1} \\ & \tilde{i}_{1} \tilde{i}_{1} (\text{light}), \tilde{i}_{1} \to b \tilde{\chi}_{1}^{1} \\ & \tilde{i}_{1} \tilde{i}_{1} (\text{light}), \tilde{i}_{1} \to W b \tilde{\chi}_{1}^{0} \\ & \tilde{i}_{1} \tilde{i}_{1} (\text{medium}), \tilde{i}_{1} \to t \tilde{\chi}_{1}^{0} \\ & \tilde{i}_{1} \tilde{i}_{1} (\text{neavy}), \tilde{i}_{1} \to t \tilde{\chi}_{1}^{0} \\ & \tilde{i}_{1} \tilde{i}_{1} (\text{heavy}), \tilde{i}_{1} \to t \tilde{\chi}_{1}^{0} \\ & \tilde{i}_{1} \tilde{i}_{1} (\text{neavy}), \tilde{i}_{1} \to t \tilde{\chi}_{1}^{0} \\ & \tilde{i}_{1} \tilde{i}_{1} (\text{natural GMSB}) \\ & \tilde{i}_{2} \tilde{i}_{2}, \tilde{i}_{2} \to \tilde{i}_{1} + Z \end{split} $	$\begin{array}{c} 0\\ 2\ e,\mu\ ({\rm SS})\\ 1{-}2\ e,\mu\\ 2\ e,\mu\\ 2\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 1\ e,\mu\\ 0\\ 3\ e,\mu\ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b nono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.3 4.7 20.3 20.3 20.1 20 20.1 20.3 20.3 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{split} & m(\tilde{k}_1^0){<}90~GeV \\ & m(\tilde{k}_1^+){=}2~m(\tilde{k}_1^0) \\ & m(\tilde{k}_1^0){=}55~GeV \\ & m(\tilde{k}_1^0){=}1~GeV \\ & m(\tilde{k}_1^0){=}1~GeV \\ & m(\tilde{k}_1^0){<}200~GeV, m(\tilde{k}_1^+){-}m(\tilde{k}_1^0){=}5~GeV \\ & m(\tilde{k}_1^0){=}0~GeV \\ & m(\tilde{k}_1^0){=}0~GeV \\ & m(\tilde{k}_1^0){=}0~GeV \\ & m(\tilde{k}_1^0){=}150~GeV \\ & m(\tilde{k}_1^0){>}150~GeV \\ & m(\tilde{k}_1^0){<}200~GeV \end{split}$	1308.2631 1404.2500 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 1407.0583 1406.1122 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{l} \tilde{\ell}_{LR} \tilde{\ell}_{LR}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{\dagger} \rightarrow \tilde{\ell} \nu (\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{\dagger} \rightarrow \tilde{\tau} \nu (\tilde{\nu}) \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{\dagger} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}, \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{R} \ell \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \text{-} 3 \ e, \mu \\ 1 \ e, \mu \\ 4 \ e, \mu \end{array}$	0 0 0 2 b 0	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}){=}0 \ \text{GeV} \\ m(\tilde{\chi}_{1}^{0}){=}0 \ \text{GeV}, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{0}){=}0 \ \text{GeV}, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{\pm}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{\pm}){+}m(\tilde{\chi}_{1}^{0})) \\ m(\tilde{\chi}_{1}^{\pm}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, sleptons \ \text{decoupled} \\ m(\tilde{\chi}_{1}^{\pm}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, sleptons \ \text{decoupled} \\ m(\tilde{\chi}_{2}^{0}){=}m(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{2}^{0}){+}m(\tilde{\chi}_{1}^{0})) \end{array}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093 1405.5086
Long-lived particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived $\tilde{\chi}_{1}^{\pm}$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e,$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow q q \mu$ (RPV)	Disapp. trk 0 ,μ) 1-2 μ 2 γ 1 μ, displ. vb	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 27.9 15.9 4.7 20.3	\$\bar{x}_1^{\pm}\$ 270 GeV \$\bar{k}\$ 832 GeV \$\bar{x}_1^{\pm}\$ 475 GeV \$\bar{x}_1^{\pm}\$ 230 GeV \$\bar{q}\$ 1.0 TeV	$\begin{split} & m(\tilde{\chi}_1^+) - m(\tilde{\chi}_1^0) = 160 \; MeV, \; \tau(\tilde{\chi}_1^+) = 0.2 \; ns \\ & m(\tilde{\chi}_1^0) = 100 \; GeV, \; 10 \; \mu s < \tau(\tilde{g}) < 1000 \; s \\ & 10 < tan\beta < 50 \\ & 0.4 < \tau(\tilde{\chi}_1^0) < 2 \; ns \\ & 1.5 < c\tau < 156 \; mm, \; BR(\mu) = 1, \; m(\tilde{\chi}_1^0) = 108 \; GeV \end{split}$	ATLAS-CONF-2013-069 1310.6584 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee \tilde{v}_{\mu}, e\mu \tilde{v}_{e} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{v}_{e}, e\tau \tilde{v}_{\tau} \\ \tilde{g} \rightarrow q q \\ \tilde{g} \rightarrow \tilde{t}_{1} t, \tilde{t}_{1} \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 2 \ e, \mu \ (\text{SS}) \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	- 0-3 <i>b</i> - 6-7 jets 0-3 <i>b</i>	- Yes Yes - Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3	\tilde{y}_r 1.1 T \tilde{q}, \tilde{g} 1 \tilde{x}_1^* 750 GeV \tilde{x}_1^* 450 GeV \tilde{g} 916 GeV \tilde{g} 850 GeV	1.61 TeV $\lambda'_{311}=0.10, \lambda_{132}=0.05$ $\lambda'_{311}=0.10, \lambda_{1(2)33}=0.05$ 5 TeV $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \text{ mm}$ $m(\tilde{\chi}_{1}^{0})>0.2\times m(\tilde{\chi}_{1}^{\pm}), \lambda_{121}\neq 0$ $m(\tilde{\chi}_{1}^{0})>0.2\times m(\tilde{\chi}_{1}^{\pm}), \lambda_{133}\neq 0$ BR(t)=BR(b)=BR(c)=0%	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	0 2 <i>e</i> , <i>µ</i> (SS) 0	4 jets 2 b mono-jet	Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 350-800 GeV M* scale 704 GeV	incl. limit from 1110.2693 $m(\chi)$ <80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
1	$\sqrt{s} = 7 \text{ TeV}$ full data	$\sqrt{s} = 8$ TeV partial data	$\sqrt{s} = 8$ full d	3 TeV lata		10 ⁻¹	Mass scale [TeV]	

stop searches (Max Wanotayaroj, Friday)

spin correlations

Electroweak-ino production, many channels and assumptions

GSMB models, delayed and non-pointing photons

out of time events and disappearing tracks

R-parity violating final states

Additional searches

W' searches to hadronic final states (Ho Ling Li, Friday)
dijet, ZZ, ZW, W\gamma, Z\gamma resonances
Vector like quarks (Brad Schoenrock, Friday)
Dark Matter inspired: Mono jets, tT, b, t
LFV and long-lived neutral particles (Andrew Hard, Friday)
prompt and non-prompt lepton jets (Hari Namasivayam, today)

Flavor Physics

Notable results

from Run 1 we anticipated:

measure: $bb \rightarrow J/\psi$, $pp \rightarrow J/\psi$, and $B^+ \rightarrow J/\psi + K^+$ cross section ratios begin to contribute to world averages on B-hadron properties; start to set limits on rare decays

from Run 1 we achieved:

many production studies, χ , ψ studies, new physics searches, new b states

in Run 2, we expect:

increased statistics, improved performance/triggers, robust against \mathscr{L}

decay of a new state, B_{C}^{*} with a mass of 6842 ± 4 ± 5 MeV Significance is 5.2 σ with "look-back"

Production and Decays, incl

 $\psi(2s)$ in many distributions, prompt and non-prompt W+ incl double parton scattering contribution χ_c production, prompt? $\Upsilon(1s,2s,3s)$ production open charm/beauty, in jets, inclusive

Spectroscopy, incl

 $\chi_b(3P)$ discovery, Λ_b mass, lifetime, PV in $\Lambda_b \rightarrow J/\psi \Lambda^0$, Rare Decays

Searches, incl

FCNC search for $B_{d/s} \rightarrow \mu^+ \mu^-$

Long Shutdown 1 Projects

Tracking system

Insertable B Layer, aka IBL

5.1 to 3.3 cm to IP pixels reduced: 50 x 250 µm new sensors and readout chip

May 7:

Gains:

impact param light jet reject

redundancy

Status: live >99.9%

Average number of pileup interactions

Tracking and Calorimeter Systems

many projects

SCT and TRT readouts enhanced, operational

new ROD in SCT

90 \rightarrow 128 S links and compression leading to 100 kHz @ μ = 87

data compression, different gating in TRT leading to 104 kHz with 2% occupancy

Pixel Detector brought to surface, reinstalled

Layer 0: 6.3% \rightarrow 1.4%; Layer 2: 7% \rightarrow 1.9%; now 98% functional of 1744 new diamond/Si beam monitors installed prepared for IBL

LAr and Tilecal

LVPS replaced (LAr) fixed (Tilecal): readouts tested to more than 100 kHz Phase 1 "demonstrator" installed Min-bias trigger scintillators

Muon system

staged from Run 1

New ROD for CSC system

limited ATLAS L1 trigger rate to 70 kHz...now 100 kHz

New EE endcap chambers

Repairs

Broken CSC chambers, repaired, reinstalled

RPC leak repairs

TGC chamber replacement requires detector to be closed

Trigger system

considerable enhancements

E_{CM} from 8 to 13 TeV (x2.5) +

\mathscr{L}_{peak} 0.8 to 1.6 x 10³⁴/cm²/s

5x trigger rates from Run 1

Upgrades to:

L1 rate, 70 kHz \rightarrow 100 kHz operation, factor 4/3 increase. **hardware**

HLT rate, 400 Hz \rightarrow ~1 kHz operation, factor of ~2 increase. **algorithms**

Trigger system hardware

New preprocessors (nMCM)

80 MHz digitization, lower noise

New merger modules (CMX)

x4 speed enhancement over CMM

L1 Topo processor

trigger on object relations at L1 e.g. $\Delta \phi(E^{miss}T, j)$

- fine tuning of

1 ns steps

MCM

digitization in

FADCs

- 40 MHz

Dual Channel ADCs

- 80 MHz

- 10 bit

- 10 bit

implements algorithms for:

- Bunch crossing ID (BCID)

FPGA

implements functionality of

- fine timing chip - ASIC algorithms

- E_{τ} measurement

Commissioning underway in-situ

57

Commissioning

multiple "Milestone weeks"

24/5! M's cosmic rays HLT & reco'd Tier 0

	М3	M4	M5	M6	M7
	May19- May 23	Jul 7- Jul 11	Sep 8- Sep 12	Oct 13- Oct 17	Nov 24- Dec 08
ΡΙΧ		X ¹ , X ²	X ²		
IBL		X1	X ²		
SCT		Х	X ²		
TRT					
LAR		Х			
TIL		Х			
MBTS		Х			
L1Calo		Х ²	Х ³	X ⁴	
CSC			X ²	X ²	
MDT					
RPC	X1				
TGC				X ²	
BCM					
ALFA			Х		
LUCID				Х	
Lumi			Х		

Commissioning multiple "Milestone weeks"

24/5! M's cosmic rays HLT & reco'd Tier 0

59

	M3	M4	M5	M6	M7
	May19- May 23	Jul 7- Jul 11	Sep 8- Sep 12	Oct 13- Oct 17	Nov 24- Dec 08
ΡΙΧ		X ¹ , X ²	X ²		
IBL		X1	X ²		
SCT		Х	X ²		
TRT					
LAR	ЛТ				
TIL	AI				
MBTS	rea	adin	g OI	jt	
L1Calo		X	0	X+	
	sin	ce "	M5′		
CSC			X ²	X ²	
MDT					
RPC	X1				
TGC				X ²	
BCM					
ALFA			Х		
LUCID				Х	
Lumi			Х		

Computing & Software & Analysis

speed/efficiency and pileup

Many algorithmic, mathematical, fitting changes

factor >3 gains

pileup robustness

Completely redesigned analysis model

"xAOD" Athena reconstruction is ROOT-readable, tuning.

disk usage tight...working on xAOD sizes

memory usage gymnastics CP tools mostly migrated

conclusion

Run 2 is an unusual event for all of us

we've seen CM energy increases:

tevatron 2 TeV to LHC 8 TeV

now we can anticipate:

14 TeV

conclusion

Run 2 is an unusual event for all of us

we've seen CM energy increases:

tevatron 2 TeV to LHC 8 TeV

now we can anticipate:

14 TeV

we've seen instantaneous ${\mathscr L}$ increases:

tevatron peak of 4 x 10³² /cm²/s to LHC peak of 7 x 10³³ /cm²/s now we can anticipate:

1.5 x 10³⁴ /cm²/s

conclusion

Run 2 is an unusual event for all of us

we've seen CM energy increases:

tevatron 2 TeV to LHC 8 TeV

now we can anticipate:

Ordersof magnitude!

tevatron peak of 4 x 10³² /cm²/s to LHC peak of 7 x 10³³ /cm²/s now we can anticipate:

1.5 x 10³⁴ /cm²/s

Conclusions

