GENERAL PURPOSE DETECTOR @ VLHC

2 DETECTORS ... BOTH WILL BE G.P. (+ SOME SPECIALIZED ?)

OBJECTS: JETS, Y, e, M, T, (b-jets), FT

MAGNET WAR INNER SOLENOD, FWD + OUTER TOROIDS

GENERIC TRACKING (e, m, to, h, h.) Si/O ... PIXELS
3D PIXELS

b-JET TAGGING (H, E, SUSY ...) VERTICES (MM), e/M IN JETS

C.M. CALORIMETRY

E-IDENT +MERS X-IDENT+MEAS

EMPART OF JETS

+ SHOWER-MAX.LAYER

had CALORIMETRY JET SPECTROSCOPY QCD, COMPOSITENESS, BH.

MON MEASUREMENT

DIRECTION (CORE) & E I SOLATED IN IDENT MEAS.

. DO NOT GIVE UP ON THIS FUNDAMENTAL FERMION!

For X>nx+y, in

ALSO FOR FY !! GIVE UP ON M & GIVE UP ON FY!

= 20% @ 5 10?] TEY

MEASURE INSIDE COIL, VERIFY BEHIND CALO.

(SAGITTA - (5 TeV, 4T, 2m.) = 120 um)

INTERIM REPORT GP. 40 DETECTORS

DENISOU / ALBROW

D. DENISON PREVIOUS VLHC DETECTOR EFFORTS

M. ALBROW

VLHC CALORIMETRY

A. SKUJA

CMS CALORIMETRY

O. LOBBAN

CAL RESPONSE OPTIMIZN.; Q-SC HYBRID

S. PARKER

3D PIXEL DETECTOR

D. Woop

M DETECTION, DØ - VLHC

M. FORTNER

M TRIGGERING, RECONSTRUCTION

D. CHRISTIAN PIXEL DETECTORS

N. MOKHOU

ENERGY DEPOSITION @ VLHC

D. DENISOV

RADIATION DOSES

What we would like to measure?

- Because there is no specific physics process to be studied, general purpose detector(s) is a must for an energy frontier machine
- In order to set benchmarks different process are used: top studies, Higgs/SUSY discovery, etc. Let's consider recent top quark discovery
 - In order to discover top quark both CDF and D0 had to detect: <u>leptons</u> (e/μ), <u>jets</u>, <u>tag b-quarks</u> (leptons or displaced vertex), and <u>neutrinos</u> (missing E_t):

Figure 1: Tree level top quark production by $q\bar{q}$ annihilation followed by the Standard Model top quark decay chain.

Branching ratio
36/81
12/81
12/81
•
2/81
2/81
2/81
1/81
T/8T
T\8T

So, we needed tracker (e/µ, vertex), calorimeter (jets, electrons), and muon system

DPMJET / MARS CALCULATIONS.

FROM COLLISIONS AT I.P.

	STAGE 1 40 TeV 1.1034	STAGE 2 175 Tev 2.10 ³⁴
CENTRAL TRACKER		
Ø+- cm ⁻² s ⁻¹ @ 10 cm	3.107	1.108
Øn	3.104	1.107
MRAD/YEAR ~	10	30

SMALL ANGLES (END CAP CLOSE TO PIPE)
× 100 > × 1000 !!

FORWARD IN SYSTEM - MUST HAVE

WELL DESIGNED SHIELDING - THEN NON-ISSUE.

FROM BEAM LOSS: 500 m' 5 IN WARH SMAIGHT APPROPRIATE SHIELDING PLUG IN TUNNEL-HALL, AROUND FRONT COLLIMATOR, ENDCAP CALORIMETER etc.

THEN MACHINE BIG LEW %, OK.

Conclusions

- 1. Cross sections and multiplicities changing with energy increase very slowly.
- 2. Multiplicity distributions have long non-Gaussian tails.
- 3. Radiation dose in the central region is function of luminosity, "not" 15.
- 4. Most of charged tracks are low momentum
- 5. All parametrs discussed are based on "extrapolation": we could see surprizes at very high energy!

TRACKING

TRACKING USING DRIFT CELLS & MM.
PROB. TOO SLOW FOR CENTRAL TRACKER.
OK FOR HUON SYSTEM.

ALL Silicon (013) CEMPRAL TRACKING

STRIPS ... MINISTRIPS (eg 50m×5mm)

PIXELS PAD' - D.CHRISTIAN COLUMN' - S. PARKOR

107 - 109 ELEMENTS

107 - 109 ELEMENTS

40 layers ~4 m long ~2 m radius

p21

Speed -- 3D vs. planar

- 1. 3D lateral cell size can be smaller than wafer thickness, so:
 shorter collection distances
- 2. in 3D, field lines end on cylinders rather than on circles, so: higher average fields for any given max field (price: larger C_{electrode}: we now have 0.2 pF / 121 μm long electrode)
- 3. most of the signal is induced when the charge is close to the electrode, where the electrode solid angle is large, so:

planar signals are spread out in time as the charge arrives

3D signals are concentrated in time as the track arrives

4. if readout chip has inputs from both n⁺ and p⁺ electrodes,

drift time correction can be made

Keys to the technology:

- 1. Can now etch deep, near-vertical holes.
- 2. With low pressure and moderate temperatures, gas molecules used to form polysilicon such as SiH₄, SiH₂Cl₂, Si HCl₃, and SiCl₄ will bounce off the hole walls thousands of times before they stick. Mostly they enter, bounce a number of times, and leave. When they stick, it can be anywhere, and so a conformal coat of polysilicon is formed as the H (or Cl) leaves and the silicon migrates to a lattice site.

- 3. Gasses such as diborane (B_2H_6) and phosphine (PH_3) can be added to the silane. They also come out in a conformal layer, and make p^+ and n^+ doped polysilicon.
- 4. Heating will drive the dopants into the surrounding single crystal silicon, forming the p n junctions and ohmic contacts in high-quality silicon, keeping electric fields away from the short-lifetime poly.

PARKER

Snowmass, July 2001

CONCLUSIONS

- 1. THE FIRST 3D DETECTORS HAVE BEEN SUCCESSFULLY FABRICATED
- 2. THEY HAVE REASONABLE LEAKAGE CURRENTS: ¼ 1 nA PER MM³ AT ROOM TEMPERATURE
- 3. THEY DEPLETE AT LOW VOLTAGES AS EXPECTED (TYPICALLY 5 10 V)
- 4. THEY HAVE WIDE PLATEAUS FOR INFRARED MICROBEAM SIGNALS
- 5. BETA, X-RAY, AND GAMMA SIGNALS HAVE BEEN SEEN
- 6. THE 14.3 KEV X-RAY LINE (241Am SOURCE) FITS A SYMMETRIC GAUSSIAN WITH A SIGMA OF 282 eV
- 7. A SENSOR WITH 100-MICRON CELL SIZE HAD ITS DEPLETION VOLTAGE INCREASE FROM 5 V TO 105V (WITH A 45 V WIDE PLATEAU) AFTER IRRADIATION WITH 10¹⁵ 55 MEV PROTONS / CM² (PRIOR TO BENEFICIAL ANNEALING)
- 8. ACTIVE EDGE PREVIEW: AN INFRARED MICROBEAM SCAN SHOWS A SENSOR WITH SETS OF NORMAL 3D CYLINDRICAL ELECTRODES BETWEEN TWO WALL ELECTRODES IS SENSITIVE TO WITHIN SEVERAL MICRONS OF THE WALL ELECTRODE.
- 9. CALCULATIONS INDICATE PULSE DURATIONS OF ABOUT 1 NS
- 10. THE 2nd FABRICATION RUN HAS STARTED

CALORIMETRIC TECHNIQUES

SCINTILLATOR + WLS FIBERS + PMT/APD/HPD (SOLID / LIQUID)

WELL ESTABLISHED RAD HARDNESS. CENTRAL

PbWO4 CRYSTALS (em) OR OTHER CRYSTALS

CMS - GOOD EN CAL COMPROMISES JET OF

QUARTZ FIBER IN CU(4.9.)

LOW SIGNAL BUT OK PORWARD. VIRAD HAKD

SILICON PADS

RAD HARDNESS? COMPACT, SAFE

DIAMOND PADS

COST! BUT BY 2020 ? RAD!

HIGH PRESSURE GAS TUBES

CHEAR, VIRAD HARD, PROMISING ESP. FORWARD.

LIQUID ARGON

ATLAS - SLOW of 18 ms

QUARTZ FIBRES (em) + SCINTILLATING FIBERS (had)

MAY BE OPTIMUM FOR EM & JETS, WITHOUT DEPTH SECHENTATION.

What is important for the experiment?

- With traditional techniques:
 - If it is important to optimize electromagnetic resolution, then a **large sampling fraction** is required.
 - If it is important to optimize hadronic resolution, then a **small sampling fraction** is required.
- These two goals exactly conflict with each other!
- In the past, the electromagnetic energy resolution has generally been given priority.
- If an electromagnetic calorimeter has a high sampling fraction, and thus a large e/h value, then it makes sense to build a hadronic calorimeter with a similarly large e/h value.

If hadronic response and resolution is a priority...

- One should choose a **compensating** and **longitu- dinally unsegmented** calorimeter.
 - It should be compensating in order to eliminate fluctuations in the electromagnetic component of hadron showers (also important for jets)
 - It should be unsegmented because calibrating lon-gitudinal segments is a **tricky business**.

Have Your Cake and Eat it, Too!!!

With dual readout calorimetry,

- Achieve essential advantages of compensation.
 - Eliminate dominating source of fluctuations in noncompensating calorimeter (fluctuations in f_{em}).
 - Eliminate signal nonlinearity.
- With this technique, the sampling fraction could be as large as needed for optimizing the calorimeter's resolution for electromagnetic showers, and the hadronic resolution **WOULD NOT** suffer!

of Muons

muons for t, b quarks tagging

com accelerator and neutrons) have

distant (showers) and loose

contion losses at a few hundred GeV, then due to contion and requires corrections

MS

station is limited by factors similar to

Stand alone
muon system resolution
~10% @ Pt~ | Toy

ATTLAS and CMS detectors for standstanding of ATTLAS and CMS detectors for standstanding of the transverse

BEST TO MEASURE PA BEFORE CALORIMETER.

MULTIPLE SCATTERING & DE FLUCTUATIONS AFFECT P (BEHIND CAL.)

& BACKGROUNDS PROM PUNCHTHRO' & DETAY OF R ALSO BEAM HALO, BACKSCATTER. \$37 DESIGN OF SHIELDING ETC.

DØ: 2Tm, 10 points, = ~1mm, sign to 300GeV WART SIGN TO ~10 TEV (?)

COMBINATION OF: TM (~4×2=87m?)

POINTS 40-50?

PRECISION - ~50mm?

& MEASURE, FOR ISOLATED M, SHOWERING

CRITICAL ENERGY, SHOWERING LOSSES = 2500 N Fe

BIG FLUCTUATIONS IN POUT FOR 1 Tey, M. (20-30 GeV)

- · ATLAS & CMS, IF WORK AT LHC, WOULD WORK AT 20+20 TeV 1034 VLHCI.
- IF LHC DEFECTORS SCALED UP 1.4 LINERALY

 (2.7 IN VOLUME) WOULD BE FAIR STARTING POINT

 FOR VLACT 100+100 Tev 2.1034
- * BUT MORE RAD HARD (R&D) TECHNOLOGY

 FASTER

 MORE PRECISION/GRANULARITY
 - 10 YEARS TO BUILD (2012-2022?) R&D > 2012 \$ 0.5-1.0 B ? PER DETECTOR