Backgrounds and Radiation Loads in VLHC Detectors

Nikolai Mokhov
Fermilab

June 9, 2001
Snowmass

Part 1. From IP
Part 2. From beam loss
100 TeV pp

1) Event properties
2) Fluxes in central tracker

as calculated with

DPMJET/MARS
50x50 TeV pp

\[\text{dN/dPt (1/GeV/c)} \]

\[\text{Pt (GeV/c)} \]

- Charged hadrons
- All hadrons
50x50 TeV pp

![Graph showing the distribution of charged hadrons and all hadrons. The x-axis represents Et (GeV), ranging from 0 to 5, and the y-axis represents dN/dEt (1/GeV), ranging from 10^{-3} to 10^2. The graph compares the distributions of charged hadrons (dashed line) and all hadrons (solid line).]
<table>
<thead>
<tr>
<th>Particle</th>
<th>$\langle E \rangle$, GeV</th>
<th>$\langle n \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>0.23597×10^5</td>
<td>0.46222×10^{-1}</td>
</tr>
<tr>
<td>\bar{p}</td>
<td>0.16563×10^4</td>
<td>0.33840×10^{-1}</td>
</tr>
<tr>
<td>e^+</td>
<td>0.12733×10^2</td>
<td>0.50200×10^{-1}</td>
</tr>
<tr>
<td>e^-</td>
<td>0.82923×10^1</td>
<td>0.55200×10^{-1}</td>
</tr>
<tr>
<td>ν_e</td>
<td>0.44893×10^1</td>
<td>0.20800×10^{-1}</td>
</tr>
<tr>
<td>$\bar{\nu}_e$</td>
<td>0.62834×10^1</td>
<td>0.15800×10^{-1}</td>
</tr>
<tr>
<td>γ</td>
<td>0.20317×10^4</td>
<td>0.77172×10^1</td>
</tr>
<tr>
<td>n</td>
<td>0.99829×10^4</td>
<td>0.40044×10^1</td>
</tr>
<tr>
<td>\bar{n}</td>
<td>0.16135×10^4</td>
<td>0.33946×10^1</td>
</tr>
<tr>
<td>μ^+</td>
<td>0.46361×10^1</td>
<td>0.16400×10^{-1}</td>
</tr>
<tr>
<td>μ^-</td>
<td>0.93866×10^1</td>
<td>0.19400×10^{-1}</td>
</tr>
<tr>
<td>K_L^0</td>
<td>0.19845×10^4</td>
<td>0.49982×10^1</td>
</tr>
<tr>
<td>π^+</td>
<td>0.17053×10^5</td>
<td>0.45827×10^2</td>
</tr>
<tr>
<td>π^-</td>
<td>0.14409×10^5</td>
<td>0.45155×10^2</td>
</tr>
<tr>
<td>K^+</td>
<td>0.23013×10^4</td>
<td>0.52018×10^1</td>
</tr>
<tr>
<td>K^-</td>
<td>0.19290×10^4</td>
<td>0.51542×10^1</td>
</tr>
<tr>
<td>Λ</td>
<td>0.23956×10^4</td>
<td>0.11880×10^1</td>
</tr>
<tr>
<td>$\bar{\Lambda}$</td>
<td>0.55848×10^3</td>
<td>0.10618×10^1</td>
</tr>
<tr>
<td>K_S^0</td>
<td>0.20078×10^4</td>
<td>0.49888×10^1</td>
</tr>
<tr>
<td>Σ^-</td>
<td>0.22324×10^3</td>
<td>0.23380×10^0</td>
</tr>
<tr>
<td>Σ^+</td>
<td>0.56489×10^3</td>
<td>0.26360×10^0</td>
</tr>
<tr>
<td>π^0</td>
<td>0.17115×10^5</td>
<td>0.50629×10^2</td>
</tr>
<tr>
<td>K^0</td>
<td>0.73638×10^0</td>
<td>0.20000×10^{-3}</td>
</tr>
</tbody>
</table>
50x50 TeV VLHC (r=7 cm, z=lt.200), dN/dE (cm$^{-2}$ GeV$^{-1}$ per year)
$50 \times 50 \text{ TeV VLHC (} r=200 \text{ cm), } dN/dE \text{ (cm}^{-2} \text{ GeV}^{-1} \text{ per year)}$
50×50 TeV VLHC neutrons, $E \cdot dN/dE$ (cm$^{-2}$ per yr) vs log10(E/GeV)
I. Interaction Point

Stage 1: 40 TeV, $L = 1.10^{34} \text{ cm}^{-2}\text{s}^{-1}$
Stage 2: 175 TeV, $L = 2.10^{34} \text{ cm}^{-2}\text{s}^{-1}$

Central Tracker:

$\Phi_z \sim \frac{1}{r^2}$

Φ_n

("gas", material dependent)

Stage 1 Stage 2

3×10^7 (4×10^8)

$\text{cm}^{-2}\text{s}^{-1}$ at $r=10\text{ cm}$

$D = 10 \ (30) \ \text{Mrad} \ \text{yr}$

Endcap calorimeter:

2 to 3 orders of magnitude higher at small radii

Forward μ-system:

Hit rate (HR)

$2 \ 12 \ \text{kHz/cm}^2$

$15 \ 100 \ \text{Hz/cm}^2$

$\text{at } r=1\text{m}$

$\text{at } r>5\text{m}$

All \uparrow with appropriate shielding!
CMS Hall

Dose (Gy/accident) - no

IP6 Unsynchronized Abort (shadows in)
CMS Hall

Dose (Gy/accident) - μ only

IPG Unsynchronized Abort (shadows in)
II. Beam Loss in IR

BL = 500 m⁻¹s⁻¹ warm/cold straights
2·10⁻⁴ m⁻¹s⁻¹ cold arcs

MARS: ± 150 - 180 m @ 500 m⁻¹s⁻¹

Appropriate shielding

1) in detector (endcap and forward)
2) around front collimator
3) plug at hall/tunnel
4) around D1 - D2 pipe

\[
\frac{\text{machine}}{\text{IP}} \sim \text{a few } \% \quad (\mu s)
\]