Muon Detectors scaled from DØ to VLHC

Snowmass 2001 July 7th, 2001

Darien Wood

__

Disclaimers

- Asked to give this talk a few days ago...not prepared before Snowmass
- Not an author SSC, LHC, or VLHC studies (should be experts in the audience)
- References:
- Design Study for a Staged VLHC (Fermilab-TM-2149)
- "Muon Identification at a Very Large Hadron Collider", T. LeCompte, et al., VLHC detector workshop 1997
- PDG Review of Particle Properties, ch. 23
- CMS muon system TDR
- Also ATLAS, SDC, GEM, ...
- Goal: stimulate useful discussion

DØ Muon System

$$p_{in} \approx p_{out} + E_{loss}$$
 (muon ID tool)

by multiple scattering (or showering) Better resolution comes from tracker; pout dominated

Background 1: punchthrough/decay

$$p_{in}>>p_{out}+E_{loss}$$

but momenta do not match. Outer decay/p.t. track points back to parent hadron,

Background 2: halo/backscatter

p_{in}? p_{out}+E_{loss}

Good timing (scintillator) can get rid of most of these

Backscatter background

Reduce source: conical beam pipe/calorimeter:

Naïve scaling: rapidity coverage

y_{max}≈ln(
$$\sqrt{s/M}$$
)
- 2.0 → 5.0 (40 TeV), 6.6 (200 TeV)

Rapidity coverage probably depends on what physics we want to do:

	2 TeV	2 TeV 40 TeV 200 TeV	200 TeV
W (M=.08 TeV)	3.2	6.2	7.8
Ttbar (M=0.35 TeV)	1.7	4.7	6.3
Zprime (M=2 TeV)	0	3.0	4.6

pseudorapidity of the daughter muon Caution: this is real rapidity (y) of the parent system, not the

Naïve scaling: sagitta measurement

- DØ: Bdl=2 T*m, with 10 points measured with about 1mm precision
- Multiple scattering and sagitta errors equal at 60 GeV (muon stand-alone measurement)
- Loose sign determination at 300 GeV
- Assume similar geometry at VLHC
- Sign determination up to 10 TeV requires
- 30 micron precison or
- eBdl=60 T*m or
- More lever arm or
- More points measured or
- Combination
- Even possible to do given showering effects?

Scaling violations

.

Very high energy muons start to shower like electrons. Critical energy = place where showering losses = dE/dx

CMS Muon Resolution (MC)

p = 4 TeV

Stable up to 100 GeV

Degradation at 1 TeV due to both sagitta resolution and showering.

Without central tracking

With central tracking

Discussion points

- \sqrt{s} =40 TeV: What can be learned from SDC and GEM designs?
- \sqrt{s} =200 TeV: What to do about muon showering?
- Muon calorimetryTransition radiation
- Triggering?