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ABSTRACT

Recent progress in realistic simulations of solar convection have given us an

unprecedented opportunity to evaluate the robustness of solar interior structures

and dynamics obtained by methods of local helioseismology. We present results

of testing the time-distance method using realistic simulations. By computing

acoustic wave propagation time and distance relations for different depths of the

simulated data, we confirm that acoustic waves propagate into the interior and

then turn back to the photosphere. This demonstrates that in the numerical

simulations properties of acoustic waves (p-modes) are similar to the solar condi-

tions, and that these properties can be analyzed by the time-distance technique.

For the surface gravity waves (f -mode), we calculate perturbations of their travel

times, caused by localized downdrafts, and demonstrate that the spatial pattern

of these perturbations (representing so-called sensitivity kernels) is similar to the

patterns obtained from the real Sun, displaying characteristic hyperbolic struc-

tures. We then test the time-distance measurements and inversions by calculating

acoustic travel times from a sequence of vertical velocities at the photosphere of

the simulated data, and inferring a mean 3D flow fields by performing inversion

based on the ray approximation. The inverted horizontal flow fields agree very
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well with the simulated data in subsurface areas up to 3 Mm deep, but differ

in deeper areas. Due to the cross-talk effects between the horizontal divergence

and downward flows, the inverted vertical velocities are significantly different

from the mean convection velocities of the simulation dataset. These initial tests

provide important validation of time-distance helioseismology measurements of

supergranular-scale convection, illustrate limitations of this technique, and pro-

vide guidance for future improvements.

Subject headings: convection — Sun: oscillation — Sun: helioseismology

1. Introduction

Time-distance helioseismology, along with other helioseismology techniques, is an im-

portant tool for investigating the solar interior structure and dynamics. Since it was first

introduced by Duvall et al. (1993), this technique has been used to derive the interior

structure and flow fields of relatively small scales, such as supergranulation and sunspots

(e.g., Kosovichev 1996; Kosovichev & Duvall 1997; Kosovichev et al. 2000; Gizon et al. 2000;

Zhao et al. 2001; Couvidat et al. 2004), and also, at the global scale, such as differential

rotation and meridional flows (e.g., Giles et al. 1997; Chou & Dai 2001; Beck et al. 2002;

Zhao & Kosovichev 2004). These studies, together with other local helioseismology tech-

niques (e.g., Komm et al. 2004; Basu et al. 2004; Braun & Lindsey 2000), have opened a

new frontier in studies of solar subsurface dynamics. Meanwhile, modeling efforts of time-

distance helioseismology have also been carried out to interpret the time-distance helioseis-

mology measurements, and provide sensitivity kernels used in inversions of the solar interior

properties (e.g., Gizon & Birch 2002; Jensen & Pijpers 2003; Birch et al. 2004).

However, despite the observational and modeling efforts, it is difficult to evaluate the

accuracy or even correctness of the local helioseismological results because the interior of

the Sun is unaccessible to direct observations. Still, there are a couple of approaches that

help to evaluate the inverted results. One of these is to compare the inverted solar interior

structures with models, e.g., comparing the subsurface flow fields below sunspots (Zhao et al.

2001) with results of sunspot models (Hurlburt & Rucklidge 2000). Another approach is to

compare the flow maps obtained by different helioseismological techniques, e.g., comparing f -

mode time-distance measurements of near-surface flows with measurements of flows obtained

by the ring-diagram technique (Hindman et al. 2004). However, the first approach is only

qualitative, and although the second approach is somewhat quantitative, there is a possibility

that different helioseismological techniques may provide similar incorrect results because they

do not account for turbulence and rapid variability of the subsurface flows.
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A convincing way to validate time-distance helioseismology is to perform measurements

and inversions on a set of realistic large-scale numerical simulation data, which not only model

the turbulent convective motions of various scale in and beneath the solar photosphere, but

also carry acoustic oscillation signals generated by the motions. These simulations have

the following properties: the spatial resolution is comparable to or better than in typical

helioseismological observations, the size of the computational domain is larger than a typical

supergranule, the temporal resolution is sufficiently high to capture useful acoustic oscillation

signals, and the time duration is long enough to extract acoustic signals with a satisfactory

signal to noise ratio. The helioseismology techniques can then be evaluated by comparing

the inverted interior results obtained from analyzing surface acoustic oscillations with the

interior structures directly from the numerical simulation.

In this paper, we use realistic three-dimensional simulations in solar convections by

Benson et al. (2006), which were based on the work of Stein & Nordlund (2000). These sim-

ulations have enabled us to directly evaluate the validity of time-distance helioseismology

measurements of the quiet Sun convection. In a previous paper, Georgobiani et al. (2006,

hereafter, Paper I) have analyzed the oscillation properties of these simulations, and found

that the power spectrum is similar to the power spectrum obtained from real Michelson

Doppler Imager (MDI) high resolution Dopplergrams. Their analysis of time-distance di-

agrams also showed that the simulated data had time-distance relations similar to those

of the real Sun. Furthermore, the near-surface f -mode analysis using the simulated data

gave surface structures similar to both those obtained from local correlation tracking and

those actually in the simulation. Thus, this set of realistic simulations of solar convection by

Benson et al. (2006) is quite suitable for detailed p-mode time-distance studies, and allows

us to evaluate the accuracy of inverted time-distance results.

In this paper, we introduce the simulated data in §2. Then we check the properties

of acoustic propagation in the interior regions of the simulated data, and make sure that

acoustic signals seen at the surface do carry information from the interior. We present these

analyses in §3. In §4, we calculate the surface sensitivity kernel from this dataset. Then, in

§5, we carry out p-modes time-distance measurements and inversions to infer interior flow

fields, and compare our inverted results with the corresponding simulation data. Discussion

follows in §6.

2. Numerical Simulation Data

The numerical simulation data we use in this paper were results of computation of multi-

scale solar convection in the upper solar convection zone and photosphere (Benson et al.
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2006), using a three-dimensional compressible, radiative-hydrodynamic code, which employs

LTE, non-gray radiative transfer and a realistic equation of state and opacities (Stein & Nordlund

2000).

Fig. 1.— Snapshots of the vertical component of velocity taken from the numerical simulation

of solar convection, showing three horizontal slices taken at the depths of 0 Mm, 8 Mm, and

16 Mm, and a vertical slice, respectively. In the vertical cut, green and yellow represents

downflows, while blue and dark represents upflows. In the horizontal slices, bright shows

downflows, and dark shows upflows.

In the space domain, the simulated data span 48 Mm × 48 Mm horizontally and 20

Mm vertically, with a horizontal spatial resolution of 96 km/pixel, and a varying vertical

spatial resolution from 12 to 75 km/pixel. In the time domain, the data were saved every 10
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seconds, but in practice, we used only every third snapshot, i.e., every 30 seconds, because

the 10-sec temporal resolution provides an acoustic frequency range far beyond the typical

solar oscillation frequencies. The whole simulation used in this analysis lasts 511 minutes.

The acoustic k − ω diagram and the time-distance diagram obtained from this simulated

dataset in the photosphere can be found in Paper I. In this paper and Paper I, the level of

the height of formation of the center of the λ676.78 nm Ni line observed by SOHO/MDI is

taken as the 0 Mm level for the convenience of description in the following text. It is 200

km above continuum optical depth unity.

Figure 1 presents a snapshot of vertical velocity from the simulation, showing three

horizontal slices taken at the depth of 0, 8, and 16 Mm, and a vertical slice, respectively.

One can see small scale granular structures in the photosphere, with downdraft lanes at

the granular boundaries, and relatively weaker upflows inside granules. Several megameters

below the photosphere, small granular structures disappear and are replaced by larger scale

structures, but with similar flow patterns, downdrafts at boundaries and upward flows inside

the structure.

3. Propagation Properties of Acoustic Waves

It is already clear that at the photospheric level, the simulations carry acoustic oscil-

lations similar to those of the real solar observations, as demonstrated in Paper I. Since

the goal of this paper is to evaluate time-distance helioseismology in the interior by use of

p-modes analysis, it would be useful and necessary to check whether the proper acoustic

oscillations exist in the interior of the simulated convection, and whether acoustic waves

propagate inside properly.

The solar acoustic waves are excited stochastically by multiple random sources in the

upper convection zone. In time-distance helioseismology, coherent wave signals are con-

structed by calculating a cross-correlation function of oscillations observed at locations, r1

and r2, separated by distance ∆ and for time lag τ :

C(∆, τ) =

∫ T

0

f(r1, t)f(r2, t + τ)dt, (1)

where f(r, t) is the oscillation signal at location r, ∆ is distance between r1 and r2, and T

is the duration of the whole sequence. The cross-correlation for each distance is obtained by

averaging numerous cross-correlations calculated between pairs of pixels, which are a given

distance, ∆, apart.

The time-distance diagram, as shown in Figure 2 in Paper I, and many other time-
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distance diagrams published in literature, are actually a collection of computed cross-correlations

with continuous time lags, displayed as a function of acoustic wave travel distance. According

to the conjecture of Rickett & Claerbout (2000), the cross-covariance function may be con-

sidered as a signal from a point surface source of some particular spectral properties. Nearly

all the previously published time-distance diagrams were obtained at the photospheric level,

as no observations or simulations below the photosphere were available before.

With the availability of 3D convection simulation, we are now capable of computing

the time-distance diagrams at different depths beneath the photosphere by cross-correlating

acoustic signals at a desired depth with signals in the photosphere, and following the equa-

tion:

C(∆, τ, d) =

∫ T

0

f(r1, 0, t)f(r2, d, t + τ)dt, (2)

where f(r, d, t) is the oscillation signal at horizontal location r, and at the depth of d and time

t. Because of the great computational burden, in practice such computations are performed

in the Fourier domain. The time-distance diagram at a depth, d, shows the time it takes the

acoustic wave to travel from a point at the surface to a point at the depth d and a horizontal

distance ∆ away.

We have computed nearly 100 such time-distance diagrams at every fifth depth of the

simulated data, since the original data have 500 vertical mesh points, but some of these

mesh points are above the photosphere and not used in computing these diagrams. Several

selected depths are presented in Figure 2. The diagram at depth of 0 Mm is actually the

time-distance diagram for the photosphere. The evolution of acoustic signals with time, and

the propagation along horizontal distance are clearly seen from 0 Mm to a depth of 8 Mm,

approximately. The time-distance diagrams match very well with the expected time-distance

relationships derived from the ray theory, as indicated by the dashed lines in each diagram.

Below 8 Mm, the signals are not so clear as above.

The two-dimensional time-distance diagrams for different depths can be represented as

a three-dimensional datacube with two spatial dimensions, horizontal distance ∆ and depth

d, and time τ . It is interesting to display the spatial images as a time sequence, showing

acoustic waves propagating from the surface into the interior. Some selected images of this

sequence are displayed in Figure 3. The left side of each image is symmetrized with the right

side. In order to better show the weak signals in the deeper regions, the signals near the

surface are intentionally saturated.

As can be seen from the time-distance diagram at the depth of 0 Mm in Figure 2, the

acoustic waves travel like a wave packet, with an oscillation period of 5 minutes or so, and a

width of about 17 minutes (also see Duvall et al. 1997). In Figure 3, at τ = 1 min, one can see
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a very small blue feature at the top, and this is considered to be the first negative oscillation

in the wave packet. With the evolution of time the blue feature, i.e., the wavefront, expands

in size, and propagates into the interior. It is followed by a signal of the opposite sign, a red

feature, which is initiated at τ = 5 min. We noted that at some moments of the evolution,

the wave fronts become open at their horizontal central region. In the upper 10 Mm or so,

the general circular wave shapes are often kept well, but below 10 Mm, the wave structure

is often irregular and noisy. Also, it looks like some signals, though weak, are reflected back

from the bottom boundary.

It is curious that the central part of the waves is open. This may come from the following

reason: Because the horizontal span of the simulation domain is only 48 Mm, the simulated

Fig. 2.— Time-distance diagrams, C(∆, τ, d) calculated from the simulated data at several

selected depths, showing the ridges corresponding to the relationships between acoustic travel

times and distances at different depths after an acoustic wave is initiated at the depth

of 0 Mm. Green dashed lines in each diagram indicate expectations of the time-distance

relationships based on the ray theory.
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Fig. 3.— Selected snapshots showing the propagation of acoustic waves into the interior,

and reflecting back to the surface. See the text for details.

data cannot carry any acoustic wave modes that have a first bounce travel distance longer

than 48 Mm. Clearly, the modes which travel a longer first bounce distance contribute most

of the signal at the central part of the wavefronts. A simple estimate of the turning depth of

the acoustic waves corresponding to a first bounce travel distance of 48 Mm is approximately

15 Mm. This is roughly in agreement with the images in Figure 3, in which no clear signals

deeper than 15 Mm can be seen.

Despite the curious open structures at the central part of wavefronts, the noise outside

the wave features and some reflected signals from the bottom, it is quite clear the waves are

substantial, clear, and in nice agreement with the theoretical expectations. The constructed
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wave propagation clearly shows that the waves are refracted back to the surface from different

turning points as expected from linear helioseismology theories. It is a great success of the

time-distance technique that it is capable of retrieving acoustic wave propagation in the

deep, very turbulent interior, and it is also a great success for the simulations that they

reproduce the basic properties of acoustic waves in the solar interior. Therefore, we conclude

that this simulation dataset is quite suitable for testing the p-mode time-distance analysis,

while keeping in mind that the deepest acoustic wave probe depth in these simulations is

shallower than 15 Mm.

4. Propagation of Surface Gravity Waves: Scattering and Sensitivity Kernels

The sensitivity functions (or kernels) represent perturbations of travel times to small

localized features on the Sun. To evaluate the potential for using surface gravity waves (f-

modes) in the simulations for testing the f -mode diagnostics, we have calculated empirical

sensitivity functions following the recent work of Duvall et al. (2006). Their work has offered

us not only another method for checking the helioseismic reasonableness of the simulated

data, but also a meaningful approach to compute the sensitivity kernels that is potentially

useful for time-distance inversions.

Duvall et al. (2006) computed the sensitivity kernels for f -modes by measuring travel

time variations around some small magnetic elements from real MDI observations. They

found elliptic and hyperbolic structures in the kernels, which are similar to the structures

modeled by Gizon & Birch (2002) and attributed to wave scattering effects. Because of

wave scattering, the travel times are sensitive not only to perturbations in the region of

wave propagation between two points but also in some areas away the way path, along a

hyperbolic-shaped regions. They concluded that their measurements demonstrated that the

Born approximation was suitable for deriving time-distance inversion kernels, and that the

wave scattering effect is important and has to be included in the derivation of the sensitivity

kernels for helioseismic inversions.

Here, we try to check whether the sensitivity kernel with similar hyperbolic structures

can be obtained from the numerical simulations, and thus whether the wave scattering is

properly modeled in the simulated data.

Since there are no magnetic elements in the current simulation dataset, we select areas

with strong downdrafts as the features to calculate the travel time sensitivity kernels. We

average the vertical velocity over the whole time sequence of 511 minutes, and select 50 small

areas that have the strongest downward flows. We set these 50 areas as the central features
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to compute the kernels. We then follow the procedure described as “feature method” in

Duvall et al. (2006), and compute travel time variations around these selected downdrafts

areas. We follow every step described in this paper, except that we use a longer time

series in our computations, and that we use the Gabor wavelet fitting to measure the wave

travel times. Although we have only one data sequence, and just 50 selected downdraft areas

available for averaging (unlike a number of observational datasets and thousands of magnetic

elements in the Duvall et al. (2006) paper), we were able to obtain the sensitivity kernels

with a reasonable signal-to-noise ratio. Still, we had to do additional spatial averaging to

recover the wave scattering structures.

Figure 4 presents the results of our measurements a) before and b) after boxcar smooth-

ing. There are some small scale black and white patches in the measured original travel time

variations, and large scale structures are not quite clear, although such structures do exist.

Such small scale structures are not seen in the kernels obtained from real observations, and

this may be possibly caused by the following reason: the numerical simulation data have a

much higher spatial resolution than the real observations, and thus our measurements could

pick up some small-scale signals that are not resolved in the observational data. Addition-

ally, the convective structures we use for such measurements are much less stable than the

real magnetic elements, and this may also contribute some noises to the measurements.

To get a better signal-to-noise ratio for large-scale structures, we applied a boxcar

smoothing to the original measurements, and obtain the result shown in Figure 4b. The

hyperbolic dark and light features appear quite clearly, similar to the sensitivity kernel

measured from magnetic elements of real observations, although the locations have slight

offset as indicated by the dashed lines. However, the details are not comparable, because our

sensitivity kernel is measured around large downdrafts areas, but not for magnetic elements

as in Figure 4c.

It is important that the hyperbolic structures are found in the f -modes sensitivity kernels

obtained from the simulated data, because this demonstrates that the wave scattering effect

is reproduced in the numerical simulation of convection. However, at present, it is difficult

to use the empirical sensitivity kernels in time-distance inversions, because the measured

kernels such as the one shown in Figure 4 may depend on various factors at the downdraft

locations, for instance, not only the vertical component of flow, but also the converging flows

that are often associated with the downdrafts. This issue requires further investigation.
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Fig. 4.— (a) Sensitivity kernel measured around downdraft locations from the simulated

data using f -modes. (b) Sensitivity kernel obtained by smoothing the kernel in (a). (c)

Sensitivity kernel measured around small magnetic elements from SOHO/MDI observations

(adapted from Duvall et al. 2006). The dark and light dashed hyperbolas in (b) and (c)

indicate the locations of two hyperbolic structures observed in (c). The white crosses in each

panel indicate the locations of observation points.

5. Time-Distance Helioseismology Test for Sub-Surface Flows

To test the current time-distance helioseismology procedure, we measured travel times

of acoustic waves using only the vertical velocity at the photospheric level from the simu-
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Fig. 5.— Averaging kernels for the selected target depths. Note that each point is plotted

at the middle of its corresponding depth interval.

lated data, then inferred the three dimensional velocities in the interior by using the inversion

procedure based on a ray approximation (Kosovichev & Duvall 1997; Kosovichev et al. 2000;

Zhao et al. 2001), and finally compared the inversion results with the averaged interior veloc-

ities from the simulations. Following the typical p-mode time-distance measurement schemes

(e.g., Zhao et al. 2001), we select the following seven annulus radii to perform our measure-

ments: 8.64 – 10.37, 10.56 – 12.29, 12.48 – 14.21, 14.40 – 16.13, 16.32 – 18.05, 18.24 – 19.97,

20.16 – 21.89 Mm. The greatest annulus is a little smaller than half of the horizontal span

of the simulated data. In order to evaluate the previous inversion results, the inversions here

employ the ray approximation kernels.

To evaluate the inverted time-distance results, we compare our inversion results for flows

with the actual flow fields directly from the simulated data. The inverted results are often

given as averages of some depth ranges, for instance, 1 – 2 Mm in Figure 6. Hence, the simu-

lated data are also averaged arithmetically in the same depth interval over the 511 minutes.

For each target depth, the averaging kernels from the inversion are three dimensional, and

Figure 5 only presents a one dimensional curve corresponding to the central point. In addi-

tion to the direct comparisons, it is interesting to convolve the three dimensional averaging

kernels with the three dimensional simulated velocities, and see how the resultant velocities

compare with the inverted velocities. In the following, we present results from the direct

comparison, but give the correlation coefficients of both comparisons in Table 1.
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Fig. 6.— Comparison of the inverted horizontal flow fields with the simulated data, at the

depth of 1 – 2 Mm: horizontal flow fields from the simulations (a) and the inversions (b),

and a divergence map from simulation (c) and inversion (d). Both vector flow fields, and

both divergence maps are displayed with same scales. The longest arrow corresponds to 300

m/s.

5.1. Horizontal Flow Fields

Figures 6, 7, and 8 present the inversion results for the horizontal flow components

for in three layers: 1-2 Mm deep, 2-3 Mm, and 4-5 Mm. Comparing the horizontal vector

flows, as well as the divergence map computed from the horizontal flows, we find that at the

depth of 1 – 2 Mm the inversion results agree quite well with the time averaged simulation

results. The results reveal areas of strong flow divergence, which have a typical size of solar

supergranulations. This is in good agreement with the results obtained by the time-distance

analysis of f -modes and by a correlation tracking method, which are presented in Paper I.

These divergent areas are nearly in one-to-one correspondence between the inverted results
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Fig. 7.— Same as Figure 6, but at the depth of 2 – 3 Mm.

and the simulated data, with similar magnitudes as well. It should be pointed out that the

flow maps for the simulated data are displayed after applying a low-pass filtering to only

keep structures that have a wavenumber smaller than 0.06 Mm−1, in order to better match

the time-distance computational procedures, which undergo filtering and smoothing during

measurements and inversions.

As the inverted area deepens, the correlation between the inverted results and the

simulated data gradually worsens. At the depth of 2 – 3 Mm one can still see those divergent

flow patterns in both data, but clearly not as clearly as at the depth of 1 – 2 Mm. However,

at the depth of 4 – 5 Mm and deeper, the inverted horizontal flows show no clear correlation

with the simulated data.

Table 1 presents the correlation coefficients between the inverted results and the simu-

lated data at different depths in two horizontal velocity components, the divergence that are

computed from the horizontal components, and the vertical velocity (see the next section),
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Fig. 8.— Same as Figure 6, but at the depth of 4 – 5 Mm.

Table 1: Correlation coefficients between inverted results and simulated data at different

depths. The numbers shown in parenthesis are correlation coefficients after the simulated

data are convolved with the inversion averaging kernels.

depth vx vy divergence vz

0 – 1 Mm 0.72 (0.72) 0.64 (0.64) 0.56 (0.56) -0.72

1 – 2 Mm 0.85 (0.87) 0.76 (0.76) 0.89 (0.91) -0.72

2 – 3 Mm 0.87 (0.92) 0.74 (0.83) 0.78 (0.84) -0.29

3 – 4 Mm 0.74 (0.84) 0.37 (0.53) 0.36 (0.50) 0.34

4 – 5 Mm 0.18 (0.51) 0.25 (0.62) -0.35 (-0.11) 0.32

separately. It is clear that the shallow regions often have better correlations than the deeper

regions, except for the vertical velocity. It is curious but not clear why the two horizontal

components have correlation coefficients that differ so much, with the north-south direction
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Fig. 9.— Comparison of the inverted vertical flows with the simulated data. The upper

panels shows the vertical velocities from inversion at the target depths of, from left to right,

1 – 2 Mm, 2 – 3 Mm, and 4 – 5 Mm. The lower panel shows the simulated vertical flows

averaged for the corresponding depth ranges. Dark regions show upflows, and light regions

show downflows. The velocity range is from −150 to 150 m/s.

often worse than the east-west direction. A similar east-west and north-south asymmetry

in time-distance results was also found when comparing with local correlation tracking re-

sults (Švanda et al. 2006). And, the correlation of the divergence maps also differ from that

of the horizontal components. It is worthwhile pointing out that after the simulated data

are convolved with the inversion averaging kernels, the correlation coefficients are generally

improved, significantly in the deeper areas.

5.2. Vertical Flow Fields

It is often the case, in both real observations and numerical simulations, that in the

photosphere the vertical velocity is significantly smaller than the horizontal velocity of the

same depth, due to the strong density stratification in the upper solar convection zone.

And often, near the surface, the downward flows concentrate in very narrow lanes among

boundaries of granules or supergranules. These properties make it more difficult to infer
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vertical velocities by the local helioseismology techniques, which often involves large area

smoothing, because the small magnitude vertical velocity in small areas can be easily smeared

out.

Figure 9 presents results of time-distance inverted results of vertical flows, along with the

averaged vertical velocities from simulated data at the corresponding depths. At the depth

of 1 – 2 Mm the inverted vertical velocities basically have opposite signs to the simulated

velocities. For the other two depths, no clear correlation or anti-correlation is seen. As

also presented in Table 1, the correlation coefficients show that, at shallow depths, inverted

vertical flows are in anti-correlation with the simulated data, while at deeper depths, the

correlations are positive but weak. It seems that the inversions for the vertical flow fields are

completely unsuccessful. This discrepancy is not only due to the small magnitude of vertical

velocities, but is also caused by the cross-talk effects discussed in the next section.

6. Discussion

The realistic simulation of solar convection obtained by Benson et al. (2006) gives us

an unprecedented opportunity to evaluate the time-distance helioseismology technique and

some other local helioseismology approaches.

By computing the time-distance diagrams at different depths, as shown in Figures 2

and 3, we have confirmed that there are acoustic waves propagating in the interior in the

simulated data with properties similar to expected from the helioseismology theory. Although

there are some unexplained correlated signal noises, bottom reflections, and open structure

at the center of wavefront, these do not affect our time-distance analysis in shallow regions

below the surface. The longest annulus used in our analysis is about 21 Mm, which probes

into a depth of approximately 6.5 Mm according to ray theory, shallow enough not be

affected by those unexplained factors in the simulations. Our measurements of the f -mode

sensitivity kernel near the surface, shown in Figure 3, have demonstrated that the convection

simulation data have wave scattering properties similar to the real solar observations. These

analyses demonstrate that the simulated data have the wave properties that are necessary

for time-distance helioseismology analysis.

Using very turbulent convection data at the photospheric level and the time-distance

technique based on a ray approximation, we were able to derive the internal flow fields, which

are in nice correlation with the simulation results in shallow regions. It is not surprising

that the time-distance inversions cannot well resolve properties in larger depths, which was

already demonstrated by some artificial data tests (e.g., Kosovichev 1996; Zhao et al. 2001).
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It is believed that the reliability of inversion results highly depends on the number of ray-

paths passing through that area, whereas deeper areas have fewer ray-paths passing through

and less information brought up to the surface. Additionally, it should be recognized again

that the horizontal scale size of 48 Mm limits the deepest ray-path penetration at a depth of

approximately 15 Mm, and our longest annulus radius once again limits our deepest probe to

a depth of 6.5 Mm or so. Therefore, it is quite reasonable that our inversions give acceptable

results until a depth of only 4 Mm or so.

It is also not surprising to see the failure of vertical flows in inversions. Certainly, the

small magnitudes of vertical velocity may be one reason. However, we believe that the main

reason of the failure is due to the cross-talk effects, as already demonstrated by use of some

artificial tests (Zhao & Kosovichev 2003). The divergence inside supergranules speeds up

outgoing acoustic waves by the same way as downdrafts do, and similarly, the convergence

at boundaries of supergranules slows down outgoing waves from this region similar to what

upflows do. The time-distance inversions cannot distinguish the divergence (or convergence)

from downward (or upward) flows, especially when the vertical flow is small in magnitude.

Although it is believed that some additional constraints, e.g., mass conservation, may help

the inversion in resolving vertical flows, current inversion technique of time-distance restricts

itself using pure helioseismological measurements. This set of simulated data may give us a

very good test ground for the future development of vertical velocity inversion codes.

Still, inversions in this study use the ray approximation kernels in order to evaluate

the old results published previously by use of such kernels. With the availability of Born

approximation kernels (Birch et al. 2004), it would be very interesting to test such kernels by

this kind of analysis on the current simulated dataset, although some previous experiments

(Couvidat et al. 2004) showed that the inversion results based on two different kernels did

not differ much. It is expected that the Born kernel may give better results in deeper areas,

but may not be able to solve the vertical velocity problem caused by the cross-talk effects.

New time-distance helioseismology schemes are probably required for the solution.

The numerical simulation of solar convection give us an opportunity to evaluate the

time-distance technique in quiet solar regions. However, it would be especially interesting

if we could test this helioseismology technique in a magnetized region, as the simulations of

magnetoconvection (e.g., Stein & Nordlund 2006; Schüssler & Vögler 2006) are extended in

both spatial and temporal scales to meet the helioseismological measurement requirements.

For instance, we can evaluate the accuracy of the inferred sunspot structures and flow fields

(Kosovichev et al. 2000; Zhao et al. 2001), and evaluate various magnetic field effects based

on such numerical simulations.
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