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ABSTRACT

Velocity fields from simulated solar turbulent convection are investigated by decomposing the
vector fields into potential and rotational fields. The motivation for the split is to isolate acoustic
fluctuations from turbulent fluctuations, a separation of interest to helioseismology. We associate
solenoidal fluctuations with turbulence based on the classical definition that turbulence causes
mixing. We analyze both spatial and temporal characteristics of the resulting velocity fields. We
find that the energy content is significantly higher in the rotational velocity component, while
acoustic mode signatures are in the potential component. These results verify the assumption in
helioeismology that the acoustic propagations can be treated using small perturbation analysis.

Subject headings: convection—stars:oscillations—methods:numerical

1. Introduction

Achievements in helioseismic observations,
both ground-based (GONG) and space-based
(SOHO/MDI), provide large amounts of data
about the structure and dynamics of the Sun.
These data impose observational constraints on
analytical models of turbulent convection, differ-
ential rotation, large-scale circulation etc., and
are used to test and calibrate these models. In
turn, the models are used to understand existing
helioseismic observations and predict new effects.
Therefore, it is important to develop accurate and
realistic models of solar convection and oscillations
in order to obtain a clear picture of solar dynam-
ics. The dynamics of the Sun are the major source
of space weather that impacts satellite operations
and NASA missions. In addition, analytical mod-
els verified using solar observations can be applied
to other stars (Georgobiani et al. 2004b), and pro-

vide predictions of properties of stars, which is the
goal of planned NASA asteroseismology missions.

The most realistic models are based on three-
dimensional time dependent simulations of solar
convection. Simulations of the shallow upper layer
of the solar convection zone by Stein & Nord-
lund (cf Stein & Nordlund (2000) and references
therein) demonstrate excellent agreement with ex-
isting analytical theories and observations. For
instance, comparison of oscillation spectra in the
simulated and solar data from SOHO/MDI (cf
Georgobiani et al. (2004a)), as well as the rates
of stochastic energy input to the low-degree solar
modes in the simulations and GOLF observations
(Roca Cortés et al. (1999)) show good agreement
(see Stein & Nordlund (2001), Fig 7).

Detection and visualization of the particular
features of vector fields, namely, their acoustic
sources and sinks, as well as their vortices, is very
important, because these features affect the phys-
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ical behavior of flows. However, in the case of
turbulent convection flow this is a nontrivial task
because turbulence and acoustics are coupled. In
this paper, we attempt to investigate properties of
turbulent convective flows on the Sun by decom-
posing them into potential and rotational compo-
nents. The basic idea is that the potential compo-
nent contains most of the acoustic field, and the
rotational part contains mostly turbulence.

The idea of reconstructing a vector field given
its vorticity and divergence dates back to pioneer-
ing works of Helmholtz and Kelvin in 1860s. In our
days, the formalism of the inverse problem, the de-
composition of a given vector field into its poten-
tial (curl-free) and vortical (divergence-free) com-
ponents is widely used in different areas of compu-
tational fluid dynamics for feature recognition of
the flows. Applications of this formalism can be
found in various fields of research, from fluid and
deformable object simulations to electromagnetic
fields to the analysis of medical data.

The Helmholtz-Hodge decomposition (Abra-
ham et al. 1988) suggests that any smooth vec-
tor field can be uniquely represented by the sum
of its potential (curl-free), rotational (divergence-
free) and harmonic (both curl-free and divergence-
free) components. This decomposition helps to
extract the flow features and singularities. Tech-
nically, the potential flow component contains
only sources and sinks, while the rotational term
contains only vortices. Discrete analogue of the
Helmholtz-Hodge decomposition on regular grids
is usually implemented by means of a finite dif-
ference approach and is widely used in graphics
(see, for instance, Stam 1999; Fedkiw et al. 2001).
Amrouche et al. (1998) proposed various meth-
ods to solve this issue for piecewise-linear vec-
tor fields. Polthier & Preuss (2000) and Polthier
& Preuss (2002) derived a variational technique
for 2D discrete piecewise-constant vector fields.
Based on these works and on Stam (1999), Tong
et al. (2003) extended this technique to 3D and
combined it with a multiscale vector field decom-
position to facilitate feature recognition in vector
flows.

The realistic simulations of the convective zone
can help to better understand the interactions be-
tween mean flow fields, turbulence and acoustics.
We use the discrete Helmholtz-Hodge decomposi-
tion to analyze the time series of 3D velocity fields

from the simulations of solar turbulent convection
in an attempt to decouple turbulent and acoustic
signals. We decompose a given vector field into
potential and rotational components. We analyze
the flow features and calculate the spatial and tem-
poral spectra of the potential and rotational com-
ponents. We find that the kinetic energy content
is much higher in the rotational component, while
the oscillations are confined in the potential com-
ponent, although they are driven by turbulence.

2. Velocity Field Decomposition

The goal of this paper is to apply a technique
of vector field decomposition to numerical simula-
tions of solar turbulent convection. According to
the fundamental theorem of vector analysis, any
well-behaved vector field, ui, has a unique rep-
resentation, to within constant vectors (harmonic
component), as a sum of a potential field, uP

i , and
a solenoidal (rotational) field, uR

i :

ui = uP
i + uR

i , (1)

where

uP
i = φ,i; u

R
i = ǫijkψk,j . (2)

Here we use tensor notations for divergence, φ,i,
and curl, ǫijkψk,j . ǫijk is the Levi-Civita symbol.
For these fields, the following relations hold by
definition:

ǫijku
P
j,k = 0, ǫijku

R
j,k = ǫijkuj,k; (3)

uR
i,i = 0, uP

i,i = ui,i. (4)

Roughly speaking, all sources and sinks of a given
field ui are collected in uP

i , whereas all its vor-
tices appear in uR

i . This formalism, also called the
Helmholtz-Hodge decomposition, is widely used in
computational fluid dynamics, because it helps to
better visualize complex flows, to recognize their
important features, to describe vector fields and
study their topology; but it has never been ap-
plied before to the 3D numerical simulations of
solar convection.

We use the 3D hydrodynamic code by Stein &
Nordlund (for details, see Nordlund & Stein 1990;
Stein & Nordlund 2000, and references therein) to
calculate flow fields in the upper convection zone.
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The code simulates the shallow upper layer of the
solar convection, 6 Mm by 6 Mm wide and about 3
Mm deep, with a detailed treatment of radiation.
We have calculated short series at high resolution,
253×253×163 grid points, and long time series at
low resolution, 63×63×63 grid points - 72 hours of
solar time, recorded every 30 sec. We use the high
resolution fields to study the flow topology, while
the low resolution time series of the simulated flow
fields are helpful for calculating the spatial and
temporal power spectra, energy content of differ-
ent components etc.

We proceed with the decomposition in the fol-
lowing manner. Without loss of generality, we can
split the mean velocity field into a potential and
rotational components, according to Eqs (1) - (2):

ui = ǫijkψk,j + φ,i = uR
i + uP

i (5)

We take divergence of Eq (5):

φ,ii = ui,i = uP
i,i (6)

and then solve the resulting Poisson equation on
the numerical grid of the code, using its Pade-like
finite difference schemes in vertical and horizontal
directions, to obtain the potential velocity compo-
nent. Strictly speaking, the uniqueness of the de-
composition requires proper boundary conditions,
namely, uP

i,i must be normal to the boundary of
the region where the decomposition takes place,
while ǫijku

R
j,k must be tangential to that bound-

ary. These conditions reduce to constant uP and
uR at the boundaries. Constant uP at the bound-
aries reflects the fact that the potential component
is defined up to a constant. We assume that vor-
ticity is negligible at the boundaries of the simu-
lated domain and substitute the values of the total
velocity at the boundaries to solve for the poten-
tial component. Then, the rotational component
is calculated as a difference between the total ve-
locity and its potential component.

3. Results

Examples of the simulated velocity field and its
potential and rotational components are shown as
vertical slices through the simulation domain in
Fig 1 and as horizontal slices in Fig 2. These
results are obtained from the decomposition of
the high resolution velocity fields. The total

Fig. 1.— Vertical slices of the initial velocity field
(left), its potential (middle) and rotational compo-
nent (right panel) at a fixed arbitrary horizontal
coordinate. Potential component looks structure-
less, while rotational component, similarly to the
total velocity, shows strong turbulent downdrafts.
The magnitudes change from smallest (light) to
largest (dark).

Fig. 2.— Horizontal slices of the initial veloc-
ity field (left), its potential (middle) and rota-
tional component (right panel) at the visible sur-
face. There are no sharp features in the potential
component, while the rotational component, like
the total velocity, exhibits sharp intergranular tur-
bulent features. Black is for largest, white is for
smallest magnitudes.

and the rotational velocity slices closely resemble
each other visually. From these images, one can
conclude that the rotational velocity component
is dominant, whereas the potential component is
rather weak and featureless. This conclusion is
reinforced by the comparison of the time averaged
spatial power spectra of the vertical components
of these three velocities, measured at the height
of 200 km above the visible surface (Fig 3): the
energy content is much lower in the potential ve-
locity, and it peaks at lower spatial wavenumber
(larger characteristic spatial scale) than the vor-
tical (or total) velocity with its dominant sharp
small-scale turbulent features. We also look at
the kinetic energy distribution with depth in each
of the components (Fig 4). In the region of wave
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Fig. 3.— Time averaged spatial power spectra of
the initial velocity (solid line) and its potential
(dashed line) and rotational (dotted line) compo-
nents at 200 km above the surface. The energy
content is much lower in the potential component,
and its characteristic spatial scales are larger than
for the rotational or total velocities.

Fig. 4.— Kinetic energy ρu2 averaged over time
and horizontal planes, as function of depth, for the
initial velocity (solid line), potential (dashed) and
rotational (dotted line) components. The energy
is significantly lower in the potential component.

excitation, immediately below the visible surface
and down to 1 Mm, the potential component car-
ries significantly less energy than the rotational
(or total) velocity.

We construct temporal power spectra of the
vertical components for the three velocities, mea-
sured at 200 km above the visible surface. Our re-
sults show that the potential velocity component
displays prominent acoustic modes, whereas the
rotational component mostly contributes to the
characteristic slope of the background noise, with

Fig. 5.— Temporal power spectra of different ve-
locity components, measured at 200 km above the
surface. Total (solid line) and potential (dashed
line) velocity show the oscillation mode peaks;
they are very similar, except at low frequencies.
Rotational (dotted line) velocity signal represents
the background convective noise. The curves are
smoothed over ∆ν = 0.1 mHz.

no mode signal (Fig 5). In this Figure, we plot
nonradial power spectra, because the horizontally
averaged (radial) rotational velocity component is
zero. Both spatial and temporal velocity spectra
and their kinetic energies are calculated from the
long time series of the low resolution runs. Spatial
spectra are averaged over time; kinetic energies of
different components are averaged over horizontal
planes and time. It is interesting that at low fre-
quencies each component has higher power than
the power of the total signal, meaning that these
two parts of the velocity field contribute in an-
tiphase.

4. Summary

We have simulated the turbulent velocity field
of solar convection using Stein & Nordlund 3D
code, and decomposed it into a potential and a ro-
tational component. We have analyzed spatial and
temporal spectra of these components. We have
found that the kinetic energy content is higher in
the rotational velocity component, and that the
potential component can be treated as a small per-
turbation of the total flow field, in agreement with
earlier findings (cf Nordlund & Stein 2001). The
temporal power spectrum of the potential com-
ponent shows distinct acoustic mode peaks, while
the rotational component spectrum primarily con-
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sists of convective background noise, dominating
at very low frequencies and quickly decaying at
higher frequencies. This suggests that in the po-
tential component, the power is concentrated in
the acoustic resonant modes trapped in the upper
convection zone.

The velocity field decomposition helps to elu-
cidate the complex problem of the relationship
and energy balance between turbulence and oscil-
lations, and to understand the mechanism of gen-
eration of acoustic waves by solar and stellar tur-
bulence. Our results show that most of energy is
contained in the turbulent component of the flow.
Turbulent flows excite acoustic waves, and part
of their energy becomes transferred into oscilla-
tions. This picture is different from the earlier
ideas about the energy equipartition between the
turbulent eddies and acoustic modes. Turbulent
velocity component exhibits smaller spatial scales
than the acoustic component. In a sense, there is a
partial inverse cascade, with part of energy being
transferred from smaller to larger spatial scales of
turbulent convection.

It would be interesting to implement similar
velocity decomposition to the simulated velocity
fields with higher spatial resolution, and to the
simulations with magnetic fields of various geom-
etry and strength; we leave this opportunity for
future investigations.

DG is supported by the Center for Turbulence
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edged.
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